Free surface flows with several stagnation points
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1 Introduction

In a recent paper Dias & Vanden-Broeck (1993) presented a model for the spray at the bow of
a ship. The bow was assumed to be a semi-infinite flat-bottomed body terminated by a face
inclined with the horizontal. The spray was modelled by a layer of water rising along the bow
and falling back as a jet (see Figures 1.1a and 1.1b). The solutions were computed by a series
truncation procedure. It was found that there is a solution for each value of the Froude number

u .
Fd:W. (1.1)

Here U is the velocity at infinity, g the acceleration due to gravity and d the draft.

For large values of Fy, the separation point D is on the bow as in Figure 1.1a. As Fy
decreases, the separation point D rises along the bow and then moves on the free surface. There
are therefore two stagnation points S and D on the free surface (see Figure 1.1b). As Fy is
further decreased, the distance between the stagnation points D and S increases. However more
and more terms in the series representation are needed to compute accurate solutions. Therefore
Dias & Vanden-Broeck (1993) presented only solutions for which the distance between the two
stagnation points D and S is relatively small.

Figure 1.1: Bow flows: (a) stagnation point on the bow, (b) stagnation point on the free surface.
The dotted line represents the dividing streamline.
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Figure 1.2: Free surface flows with two stagnation points. Computed solutions on branch I with
P =0.5354,¢ = 0.5899 (left) and P = 75.56 ,¢ = 22.14 (right).

We consider here another flow for which there are two stagnation points on the free surface
(see Figure 1.2). This flow can be created by opening a slit in a flow beneath a flat plate and
applying a negative pressure in the slit. There is a vertical wall BC and a horizontal wall AB on
the left as in Figures 1.1a and 1.1b. There is also a vertical wall ED and a horizontal wall EG
on the right. Therefore the configuration of Figure 1.2 can be viewed as an “approximation” of
the flow of Figure 1.1b in which the dividing streamline DI is replaced by the walls ED and
EG. The “approximation” has the advantage that solutions for which the distance between the
two stagnation points is large can be computed.

The computations for large distance between the stagnation points reveal a new feature
of the flow. There is a countably infinite number of solutions and the profiles are wavy.

2 Formulation

We consider the flow configuration of Figure 1.2. The flow domain is bounded above by the
vertical walls BC and ED and by the horizontal walls AB and EG. We assume that the fluid
is incompressible and inviscid and that the flow is steady and irrotational. Far downstream
the flow is characterized by a uniform stream with a constant velocity U. We choose cartesian
coordinates with the origin on the free surface at an equal distance from the two vertical walls.
We assume that the flow is symmetric with respect to the y-axis. We introduce the potential
function ¢ and the stream function . Without loss of generality we choose 1 = 0 on the free
surface and ¢ = 0 at the origin. We denote by P and P+ K the values of the potential function
at the points D and E. It follows from the symmetry of the flow that ¢ = —Pand ¢ = -P-K
at the points C and B.

We shall construct solutions for which the points C and D are stagnation points. We
define dimensionless variables by taking K/U as the unit length and U as the unit velocity. The
problem is characterized by the dimensionless value P of the potential at D and the parameter

e=—. 2.1)

The series expansion formulation consists in mapping the fiow domain onto the upper
half unit disk and to expand the complex velocity as a Taylor series inside the unit disk. The




image of the free surface is the upper half unit circle. The image of the solid boundaries is the
real diameter.

The mapping of the flow domain from the plane of the complex potential (f-plane) to
the upper half unit disk (¢-plane) is provided by

f=(—1—_‘367(t+%), (2.2)

with P = 2¢/(1 ~ e)?. Next we expand the complex velocity ¢ as

+00
(=(1-)-12)2 Y ant®™. (2.3)
n=0
This expansion factors out the singular behavior of the velocity at the corners F and B (¢ =
te) and the singular behavior of the velocity at the stagnation points D and C (¢ = +£1).
Moreover, the expansion takes advantage of the symmetry of the problem. At ¢ = 0, the
velocity approaches unity. Therefore a9 = e. Bernoulli’s equation on the free surface yields

el¢I® + 2y = 2yfe=s1 . (2.4)

Parameterizing the free surface by t = €° ,0 < 0 < 7, and differentiating (2.4) with respect to
o leads to

elu(o)u,(0) + v(0)v,(0)] — Psin &-1;"’—(;)&(-!‘-’—313?0_) =0. (2.5)

This completes the formulation of the problem. We seek ¢ as an analytic function of ¢ in
the upper half unit disk, satisfying (2.5).

3 Nwumerical results

The series is truncated. Let N -- 2 be the order of the truncation, i.e. the coefficients ag up to
an-2 are kept in the series. First we introduce the mesh points on the free surface
a-pr
(T]—-—é—jv—:—z—, I—l,N—l. (3.1)
We introduce the N unknowns P and a7,/ =0,...,N — 2,

We evaluate Bernoulli’s equation (2.5) at the mesh points. This provides (N — 1) equa-
tions. The last equation simply is ap = e. The system is solved numerically by Newton’s
method.

We computed eight branches of solutions, which are plotted in Figure 3.1. As P increases
along a branch, the waves on the free surface increase in amplitude. One way to characterize
each branch is to count the number of waves between the vertical walls. Profiles are shown in

Figures 3.2 and 3.3.
As P increases, the flow looks more and more like a stern flow (see for example Figure 1
in Vanden-Broeck (1980)). Figure 3.3 shows a computed solution with P = 80 along branch
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Figure 3.1: Free surface flows with two stagnation points. Computed solutions in the P-¢ plane.

The branches are labelled I, II, etc, counterclockwise. The label is the number of waves of the
solution for large P.
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Figure 3.2: Free surface flows with two stagnation points. Computed solutions on branch IV
with P = 5.35,¢ = 0.64 (left) and P = 20,¢ = 1.80 (right).
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Figure 3.3: Free surface flows with two stagnation points. Computed solution on branch VIII
with P = 30, ¢ = 1.33 (left) and P = 80, ¢ = 3.41 (right).




