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INTRODUCTION

The free-surface absorbing layer or "numerical beach" is one of the most common method for absorbing
outgoing waves at the end of numerical wave basins. It is based on a paper by Israeli & Orszag [1], and
was applied to free-surface flow simulations for the first time by Baker et al. [2]). Later on, many other
authors further developed this technique which consists in adding an additional dissipative term either
in the dynamic free-surface condition [3], or in the kinematic condition [4), or in both of them [2] [5] [6].
Furthermore, this technique can be coupled to a Neumann boundary condition on the vertical closing
surface [7] [8] to extend the bandwidth of the overall absorption in the low frequency range without
increasing the length of the numerical beach. The form of the added term remains arbitrary, provided
it results in energy dissipation when the waves pass through the "beach” zone @ (Figl.). It seems
however that no systematic study was carried out to optimize the technique, taking advantage of this
degree of freedom. The purpose of the present preliminary study was to develop a method for
computing the entire solution (velocity potential, reflection transmission and absorption coefficients)
for a given form of the additional term in the linearized frequency domain. This method is based on a
differential formulation of the problem with regard to the horizontal variable X and it could be used in
other applications where the wavenumber depends on X such as : wave reflection from thin floating ice

sheet [9], or variable finite depth problems without any wide spacing assumption as in [10] [11]. It will

be used in a future study to determine the optimal form of the dissipative term, again in the frequency

domain, with the constraint of keeping the beach as short as possible for obious numerical reasons.

Finally, we shall implement this optimal solution in our non-linear time domain "numerical wave tank"

[12] [13] where we will quantify its absorption efficiency by performing numerical experiments.

MATHEMATICAL FORMULATION AND SOLUTION METHOD:

The water depth is assumed to be the same in both the left and right semi-infinite band ® and ® ; the
space variables (X,Y) are nondimensionalized with respect to depth. A two dimensional, irrotational
potential linear theory is assumed.
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Fig.1: Definition sketch
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A rightgoing incident wave is given by an Airy potential with amplitude L, (in (1)). The usual
linearized free-surface boundary conditions hold in ® and ® where the real coefficients m, satisfy the

standard dispersion relationship : m, tanh(m,)= ©? and m, tan(m,) = -0>.
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The transmission and reflection coefficients of the beach are defined resp. as :
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In this transition domain 0< X <L the free-surface conditions is modified by addition of dissipative
terms:
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where a(X), f(X) and y(X) are given functions (to be optimized later) defining the damping beach.
Both cases were tested, in which the dissipative term in the dynamic condition was assumed
proportional either to the potential or to the normal (vertical) velocity, alone, or together with the
modified kinematic condition.

The dispersion relationship now becomes : M, (0, X)tan(M,(0,X)) = Q(®,X) (5)
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Solutions M, of Eq. (5) are now complex and depend on the space variable X ; this prevents us from

finding the potential in this zone using the method of separation of variables. However, provided all the
M, 's satisfy (5), the potential @(X,Y) in the damping domain @ can still be sought in the form :

DX, Y)= T, 0, (X) cos| M, (X).(V + D] 6)
k=0

Defined that way, the potential satisfies the free surface and the sea bottom boundary conditions. The
Laplace's equation now leads to an infinite set of 214 order ordinary differential equation in the X
variable which can be written in a matrix form :
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with, in vector notation : 1=[®0, @, D)

Given a frequency o, the matrices B and C depend on X only through the functions a(X), B(X) and
y(X), and may be computed from them at any location 0<X<L. The solution is then obtained by solving
(7) as an initial value problem by any appropriate ODE integration method (a fourth order Runge-
Kutta method was used in the present study). Initial conditions are given by the potential (1) and its
horizontal gradient at the input abscissa X=0; the latter is defined by the (k+2) coefficients
[LI,LO,..Lk], where k is the truncation order of the infinite system (7). The problem being entirely
linear, it is solved (k+2) times, with vector basic solutions [p(X)] j corresponding to the jtb problem :

[0,..,i j= 1,..,0]. The unknown potential in the beach domain @ may finally be computed as a linear
combination of the [p(X)] ; with coefficients [Lj,Lg,..L;]|, which are themselves determined by

enforcing the continuity of the potential and its horizontal derivative at the output section : X=L. From
the velocity potential in @, the mean energy flux across the numerical beach is computed directly as :
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Let the mean energy flux of the incident wave be denoted by Ej, then the beach absorption coefficient
a may be defined by the ratio : a = (E,/E;)¥?, and the energy balance for the domain @ requires :

a=1-r2-¢2_ (9
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SOME RESULTS

The above method was applied to beaches of fixed length L=2, with various form for functions a(X),
B(X) and y(X) (all symmetric around X=1) : step, linear, quadratic and cubic functions. We have also
addressed the case of shorter beaches of length 1 combined with a vertical reflecting wall at X=1 (Fig.4
and 5).

For all cases, we tested both a® and y®y pressure terms in (4), alone or associated with a Y mass
flux term. Due to the limited space, only a few results are reported in the present abstract, but more
results will be presented at the conference. We chose to give herein the absorption, reflection and
transmission coefficients for beaches with no meodification of the kinematic condition (i.e:
B(X)=0 ;VvX) in two configurations : beach alone with a semi-infinite band on each side (Fig2, 3), and
the case of a beach adjacent to a vertical wall at X =L (Fig.4, 5)
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Fig2: coefficients for a "potential beach" (i.e extra
term=a®, P(X)=0, y(X)=0) L=2; a(X) a

symmetrical linear function ("chinese hat"))

Fig3 . coefficients for a "velocity beach” (i.e extra
term=yPy, B(X)=0, a(X)=0):L=2; y(X) a
symmetrical linear function :y(0)=0. y(L/2)=1

:2(0)=0. a(L/2)=1 a(L)=0. HL)=0.

Comparing Fig.2 and 3, we see that the main difference between the two kinds of absorption via the
dynamic free-surface condition lies in the low frequency domain where absorption and reflection tend to
zero with the frequency using a velocity term (Fig.3), while both of these tend toward a common non-
zero value using a potential term (Fig.2). Hence, the latter choice seems to be the best, at least when
the beach is used alone. When the beach is associated with a piston-like Neuman condition on X=L as
in [7] [8], the absorption of low frequency waves (= w<1.0) is handled by the piston in such a way that
we have to optimize the numerical beach in the high frequency range only. From this viewpoint, we see
that when the frequency increases the reflection coefficient falls to zero much more rapidly with a
velocity term than with a potential term. Thus the choice may depend on the absorption strategy and is
left open to the user. The accuracy obtained by the present differential method is highlighted by the




coincidence of the dots and the solid line which are respectively the rigth and left hand sides of the
energy balance relationship Eq. (9). The agreement is always better than four digits with a truncation
order as low as k=5, except for a few localized frequencies where the solution seems singular.
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Figd : coefficients for a "potential beach” (i.e extra
term=a®, B(X)=0, y(X)=0): associated with a
vertical wall at X=L=1; aX) a linear
function : ¢(0)=0. a(L)=1

At the moment, we suspect this to be a purely
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Fig5 : coefficients for a "velocity beach” (i.e extra
term= y®Py, B(X)=0, a(X)=0): associated with a
vertical wall at X=L=1; y(X) a linear
function : y(0)=0. y(L)=1

numerical divergence, but a more serious mathematical problem is not excluded, and we are working
on fixing the problem. The same phenomena appears on Fig.5 where the beach is adjacent to a vertical
wall. When this point is cleared up, we shall optimize the numerical beach using the present method,
with the constraint of keeping its length as small as possible in order to save cpu time and memory size

in numerical wave tanks.
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