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A harmonically oscillating Green function, which satisfies the classical linear free surface
condition with small forward speed (correct to order U), radiation condition and bottom
condition, is studied. This can be used as a part of the analysis of wave induced motions and
loads on large volume structures.

It can be shown that the Green function (Ge*“t) can be written as
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where G is written as the double integral
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Here z —a = rcosu and y — b = rsinu, and the parameters 7 = Y% and v = 2;— have
been introduced. The z-axis is vertical and positive upwards. (a,b,c) is the source point.
B = £ denotes the non-dimensional Rayleigh viscosity, w the frequency of oscillation, h the
water depth and o the current angle with respect to the positive z-axis. One can either start
integrating the double integral in the k-direction or in the #-direction. These two alternative
ways of calculating Gy will be discussed here.

1 Alternative 1

In the first method one integrate first in f-direction. The procedure is based on a general
idea by Knudsen [1992]. Then G can be written as
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where

A = A(k) = cosh k(z + h) cosh k(c + h)e™**
B=B(k)=k+v

C = C(k)=2rk




D = D(k) = ksinh kh — v(1 — fi) cosh kh
E = E(k) = —2rk cosh kh(1 — gi).
By substituting t = ' equation 2 can be written as
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Here v = ei(*=%) and Q(k,t) = 'I)_-FE%{(?I%_)'

Let us assume for a moment that 7 # 0. Then E # 0 and Q(k,t) has two roots in the

t-plane, p; = —_—Qﬂéﬂ and ps = '—I)JQZEE‘—Q_EQ-. Since p1pz = 1, they are either both on
the unit circle, or one of them must be inside and the other one outside the unit circle. By
denoting the root with the smallest absolute value p; and the other one p;, we find

pa=14 P k<o
° p2 k> o,

where o, is given by the equation o4 tanhojh — v = =270,
Now, we first make a partial fraction expansion of Q(k,t). Next, @(k,t) is further rewritten
by applying 2= = 352y 2", |z| < 1. Thus,
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where k1 = k1(k) = F(C%I:%T and & = (k) = g + K1.
The remaining expression in equation 3 may also be rewritten in powers in ¢ (see Whittaker
and Watson [1950] page 358);
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Inserting the new expressions into equation 3 and integrating by the method of residues, we

are left with the integral
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If |z+c| is small, the integrand decays slowly with increasing k. To avoid difficulties regarding
when to stop integrating we follow the same technique as Faltinsen and Michelsen [1974] used
for zero Froude number. That is: integrate up to a certain k = o3, which for k£ > o3 satisfies
1 — tanh kh < €. o3 should also be chosen larger than o2. In the remaining double integral
we integrate with respect to k, leaving an integral in 6. G{*1 is then written
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2 Alternative 2

As the next alternative we will evaluate G, by first integrating in k. A similar technique as
John [1950] used in the zero speed case will be applied. We write G as
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where
p(k,0) = cosh k(z + h)[k(1 + 27 cos8) + v]
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p(k,0) has an infinite number of simple poles, c,, in the complex plane. The two real poles
are called cp+ and cy-, respectively. The complex poles are numbered n = 1,-1,2,-2, ...
with |n| growing with larger |c,]. Positive n denotes the poles with positive imaginary part.
¢_p is the complex conjugate of c,,.

Now we rewrite p(k,6) as the sum of its principal parts and an analytic function;
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The infinite series converges like 3 o2, , which is very slow. We will take advantage of

Mittag-Lefller’s theorem concerning non-convergent series in order to make our series converge

faster. That means, a Taylor expansion of the series around zero is withdrawn from the series.

We will start out by considering the first term in the Taylor series, only. Then,
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Here, g(k, ) is the analytic function and the residues satisfy Res, =
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where g;(k,6) is a new analytic function. The sum now converges as —7 In fact, withdrawing
L terms in the Taylor series would imply a convergence like —L-;r

From equation 9 we see that p(k,8) is finite in the whole complex plane away from the
poles. By applying Liouville’s theorem we find g;(k, ) to be a constant, and by comparing
equation 9 and equation 11 for k = 0, we see that the constant equals -1.

By inserting the new p(k,6) into equation 8 we find the second alternative as
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where ) = —c —ircos(0 — u + @) and B = 2h + ¢ — ircos(@ — u + ). The integrals in ¢ are
simplified by applying the exponential integral.

3 Numerical calculations and verifications

The two alternative Green functions are computed and found to agree well in a broad range
of parameter variations. G{*! is not valid when  equals zero. But it gives good results
when 7 > 0.001. In calculating the last term in equation 7, o3 has to be chosen very large.
Some extra care should be taken in evaluating this integral, including the calculation of the
exponential integral.

When evaluating G{*2, 3-4 terms in the Taylor series around zero are withdrawn (see
eq. 11). This will improve the convergence considerably. The convergence gets slower for
smaller r/h. The accuracy in computating G{'"*? depends on what accuracy we calculate the
exponential integral.

Zhao and Faltinsen [1989] solved the interaction problem between waves, current and a
structure by approximating the far-field solution by a sum of multipoles inside the structure.
This implies evaluating derivatives of the Green function (up to six’th order) are needed. We
find that the first alternative method works well with this respect, but the second alternative
is inaccurate unless both r/kh and |¢/h] are large.

So, when higher order derivatives are needed we have to rely on the first alternative
method. To verify the results we examine numerically whether G satisfies the Laplace equa-
tion and the free surface condition. Differentiation of these equations are used to verify the
multipole expressions. The results are generally satisfactory, unless |z + ¢| is small (see eq.1).
In addition, GA* and its multipoles are compared with infinite frequency results and infinite
depth results. Details about the numerical calculations and verifications can be found in
Bratland [1996].
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