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This abstract describes a technique for computing the double-body m-terms over a body using
a panel method in which both the geometry and the potential are represented by B-splines of
arbitrary order. The m-terms arise in linearizations of the exact potential-flow seakeeping problem
for a body which is traveling at steady forward speed U through waves. We expect a linearized
theory to be appropriate for the analysis of displacement ships at sea, or offshore platforms which,
although bluff, tend to operate in low speed currents. In a co-ordinate system attached to the body,
the total velocity potential may be written as

B(7,1) = B(F) + (7, 1), (1)

where it is assumed that there is a large steady “base” flow characterized by ® (%), and an unsteady
perturbation to this flow, denoted by ¢(&,t). The perturbation flow describes the combination of
diffracted incident waves and radiated waves due to the motions of the body. If the exact boundary-
value problem for ®(Z,t) is linearized about the base flow potential (e.g. as in [5]), then the body
boundary condition for a canonical impulsive radiation problem can be written

- Vor = ng (5(t) + my h(t) (2)

In Equation (2) d(¢) is the Dirac function, h(t) the Heaviside step function, while
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where 7 the unit normal vector to the body surface, and W = V& are the components of fluid
velocity due to the steady base flow. The simplest choice of base flow is an undisturbed stream,
® = Uz, and results in the Neumann-Kelvin linearization. The m-terms in this case reduce to
my = (0,0,0,0,Ung, —Uns).

Another possible choice of base flow is generally referred to as the “double-body” flow: the
result of the submerged portion of the body, plus its reflection about the z = 0 plane, traveling
with speed U in an infinite fluid. To compute this potential we let ® = —Uz + ¢% where ¢ — 0
at spatial infinity, ¢% = 0 on the free-surface (z = 0), and 7 - V¢% = Un; on the submerged body
surface S;. A Green function for this problem is
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and by applying Green’s theorem to ¢% and G(°) an integral equation for this potential can be
written as
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Equation (5) is solved using a B-spline based panel method as described in [4]. This method
allows the body geometry to be modeled in a patch-wise fashion, where each patch is a parametric
representation of the form

F(u,v) = Tmn U (u) Vi (v). (6)
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Here ﬁ, V are B splines of order k, in parameters u, v respectively, and 2, are known coefficients
or vertices. Over the parametric space of each patch, the potential is approximated by

¢(Uav) = Z ¢mn Um(u) Vn(v) 3 (7)

where U,V are B splines of order k, (not necessarily the same as k;) and ¢y, are the unknown
coefficients to be solved for through Equation (5). (The superscript on ¢ has been dropped for
brevity since only the double-body potential will be discussed in the following.) Here we note that
with a suitable choice of the order of the splines (kg4, k), Equations (6)—(7) are continuous and
differentiable with respect to the parameters (u,v) over each patch.

To obtain the Cartesian derivatives of the potential on the body, it is convenient to consider the
gradient operator as the combination of a surface gradient and the derivative in the direction normal
to the surface. Further, through a relation from differential geometry [2], the surface gradient can
be expressed directly in terms of derivatives with respect to the (non-orthogonal) parameters v and
v. Thus
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and the subscripts indicate partial differentiation with respect to the parametric variables. In
Equation (8), H = VEG — F?, i = (Z, X Z,)/H, and E,F,G are the coefficients of the first
fundamental form of the surface given by

E=3y %y, F=, %, G=i, 7, . (9)

Operating on V¢ with the gradient operator in Equation (8) the second gradient matrix can
similarly be written as

VY6 = | byu by by | = VaVhriA DL,
Gra (;Z’)zy G2z
or
VYV —ii (il - VV) = V, V. (10)

Equation (10) defines nine equations for six unknowns, once the symmetry of the matrix is exploited
(i.e. (VV@)ij = (VV¢);i). The Laplace equation may be used to further reduce the number of
unknowns by one, and by choosing the appropriate five from these equations, a solvable system
can always be constructed (i.e. a linear system whose matrix has a non-zero determinant.) The
right hand side of Equation (10) involves derivatives of ¢(u,v) and the geometric quantities defined
in Equation (9) with respect to the parametric variables only. Once the second derivatives of the
potential have been computed, the m-terms readily follow.
A more elegant way of computing the m-terms however is to use the tensor identity (see [2])

0 _ - 0
mp=——V&=—-—Vo=—[i-?V,Vop—7iVs- V|, k=1,2,3; (11)
on on
where the operation 7i -2 V,V¢ = Z?:l n;VsV¢; (with n; and V¢; the three components of 7 and
V¢ respectively), and the surface divergence operator
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Equation (11) expresses the translational m-terms directly in terms of parametric derivatives of the
double-body velocities V¢ and the geometry. Some manipulation of Equation (3) further allows the
rotational m-terms to be written in terms of the steady velocities and the translational m-terms,

mp=nx W+ xm, k=4,5,6; (12)

where m = (m1,m9, m3). Note that once the linear m-terms have been computed, Equation (10)
may be written

0%¢
0,01

and used explicitly to obtain the Cartesian second derivatives. (Here [€1, €2, €3] are the unit vectors
directed along the Cartesian [z, y, z] axes.)

As an example problem to investigate the accuracy of the method we consider the double-body
flow around a floating hemisphere. Equations (11) and (12) have been used to obtain the results
presented below. The geometric B-spline representation used in the computations has £, = 6 with
36 panels, resulting in 64, 81, 100, 121 unknowns on one octant of the sphere as the order of the
potential solution is increased from k, = 3 to k, = 6. The Gaussian integration scheme employed
5xb nodes per panel, and the calculations were made using double-precision arithmetic. The chosen
geometric representation of the sphere is accurate to six digits, with maximum errors on the order
of 1077 in the geometry [#(u,v)], the surface area and the volume. Table 1 shows the maximum and
the average absolute errors in the double-body velocities for a sample of 144 points over the sphere,
as the order of the potential solution is increased. Table 2 shows the corresponding errors in the m-
terms. It should be noted that the rotational double-body m-terms on a sphere are identically zero,

which may explain the behavior of the errors for these quantities. Maximum errors tend to occur

ky, =3 ky, =4 ky, =5 k, =6

max. ave. max. ave. max. ave. max. ave.
Wi [ .0009 [ .0003 | .00006 | .00003 [ 5x 106 [2x10 6| 5x10°%[2x10°°
Ws || .0003 | .0001 | .00007 | .00003 | 8 x 1076 | 2x10°6 | 7x10°6|1x10°6
Wy || .0003 | .00008 | .00007 | .00002 | 6 x 1076 [ 2x 1076 | 5x 1076 | 2x 1076

Table 1: Absolute errors in the double-body velocities on a sphere for a fixed geometric represen-
tation as the order of the potential solution is increased.

k, =3 k, = 4 ky, =5 k, =6

max. ave. max ave. max. ave. max. ave.
my .05 .02 .002 .0005 .0005 | .00007 | .0006 | .00007
me .08 .03 .001 .0004 0002 | .00008 | .0002 | .00002
ms 1.1 1 .01 .001 .002 .0003 .008 .0001
my || .00007 | 6 x 1076 | .00007 | 6 x 106 | .00007 | 6 x 10=5 | .00007 | 6 x 1076
ms || .0002 | .00001 | .0002 | .00001 | .0002 | .00001 | .0002 | .00001
mg || .00003 | 3 x 1076 | .00003 | 3 x 106 | .00003 | 3 x 1076 | .00003 | 3 x 1076

Table 2: Absolute errors in the double-body m-terms on a sphere for a fixed geometric representa-
tion as the order of the potential solution is increased.

near the pole (on the z-axis for this discretization) where the parameterization is singular, and are



most significant in the heave m-term mg,although even these results are reasonably accurate with
ky, > 4.

The B-spline solution discussed above is next used to compute the double-body m-terms on
a Wigley hull. These are combined with a planar panel description of the geometry and used
as input to the constant strength panel method TiMIT [1], in order to compute the linearized
hydrodynamic response of the hull. Figure 1 compares the magnitudes of the computed heave and
pitch motions of the hull using both Neumann-Kelvin and double-body m-terms. Experimental
results of Journée [3] are also shown. Note that in all of these calculations the free-surface boundary
condition is the Kelvin linearized condition, ¢y — 2U ¢y + U2dus + g, = 0 [where ¢ is again used
to represent the perturbation potential in Equation (1)], so that the double-body results are in fact
a mixed linearization of the problem. The next step would be to satisfy the double-body linearized
free-surface boundary condition by distributing panels over some portion of the free-surface. We
might expect in general that ¢® — 0 rapidly with increasing distance away from the body, and so
it is likely that only a small portion of the free-surface will need to be discretized. This step is left
as future work.

Heave response Pitch response
3 T T T T T T T T T 3 T T T T T T T T T
Neumann-Kelvin linearization — Neumann-Kelvin linearization —
Double-Body m-terms ---- Double-Body m-terms ----
Experiments ¢ Experiments o

0 I I I I I I R = I
0.4 0.5 0.6 0.7 0.8 0.9 1 11 12 13 14 0.4 0.5 0.6 0.7 0.8 0.9 1 11 12 13 14

Figure 1: Magnitudes of the non-dimensional heave (%) and pitch (£*) responses for a Wigley hull

at F'n = 0.3, plotted against (%)% A is the wave amplitude, A the wave length, and L the ship
length.
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DISCUSSION

Kashiwagi: If we consistently retain the double-body flow effects in the unsteady pressure
equation, we can have a term in proportion to the unsteady amplitude of motion, which gives
the speed-dependent restoring force and may improve your results of the motion response
calculation. Do you include that term in computing the motions?

Bingham & Maniar: No, we did not, but thank you for pointing it out. We will look into it.



