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Abstract

We present a numerical three-dimensional time-domnin method which is used to study the
nonlinear force on a heaving sphere. The evolution of the fluid flow is computed using a fourth-
order Runge-Kutta scherme. Laplace’s equation for the velocity potential is solved by a higher
order boundary clement method. The fully nonlinear free-surface conditions are applied on
the actual water surface. The waterline on the body is determined fom an extrapelation
of the free surface. The shape of the waterline determines how the sphere is regridded with
quadrilateral panels. The pressure on the sphere is integrated over its actua! weited surface,
which yields the hydrodynamic force on the sphere. We compare it with previons results.

1 Introduction

In the tradition of the Boundary Integral Equation Methods (BIEMs) our group has developed a
time-domain panel method for solving general problems concerning the interaction of fixed or (free-
ly) floating bodies with fully nonlinear waves in arbitranly shaped domains. Broese et al. (1992)
and Broeze et al. (1993) used this method to model a wave passing over a shoal up to the point
of breaking. The method has also been successful in the calculation of the force signal on oscillat-
ing bodies with small and large motion amplitudes in two dimensions, see van Daalen (1993)
and Berkvens and Zandbergen (1996) (submitted for puoblication). A recent application was
the computation of hydrodynamic loads on a bottom-mounted surface-piercing cylinder, see de
Haas et al. (1995). We have extended the method to include the interaction of general three-
dimensional fisating bodies with waves.

We give a short ontline of the mathematical model and the numerical method in Sections 2
and 3. In Section 4 we describe how a parameterization of the geomeiry of & sphere is used in
determining the waterline and in regridding. The calculation of forces is outlined in Section 5.
In Section 6 we apply the method to the calculation of the hydrodynamic force signal on a half
immersed sphere which is oscillated in the vertical direction.

2 Mathematical model

The present method can handle generally shaped bodies, Here we restrict ourselves to the in-
teraction between water and a sphere. Consider a half submerged sphere in a finid with a free
surface. The fiuid is contained within a three-dimensional region {1 bounded by a free surface F,
the wetted part S of the sphere’s surface and a bottom B which we choose to be flat, but which
can be given an arbitrary shape. The fluid domain is closed an artificial lateral boundary 4. See
Figure 1 for an illustration of the geometry of the problem.

Urder the assnmptions that the fiuid be inviscid and incompressible, and the flow irrotational,
the flow can be described with a velocity potential ¢. Once the initial conditions are provided, the
flow is governed by Laplace’s equation for the potential in 12, together with the kinetic and the
dynamic free-surface evolution equation on F, and boundary conditions on B and 5. We use the
impermeability condition on B, whereas the normal velocity on 5 is inferred from the prescribed
motion of the sphere. Inherent to truncating the domain at the artificial boundary parts 4 is that
a radiation condition has to be used.



3 Numerical method

The above mathematical problem can be numerically treated as follows. At any level in time a
spatial problem governed by Laplace’s equation is solved. The spatial problem is solved using
a discretized form of 2 Boundary Integral Equation (BIE). To this end the domain boundary is
divided into boundary parts, each with the topology of a rectangle. Each boundary part is then
divided into quadrilateral panels, each of which contains a collocation point near iis cenire. An
illustration of networks and panels is shown in Figure 2. After solving this BIE, ¢ and its normal
derivative ¢, are known along the boundary of 1.

When the spatial problem is solved, a timestep can be carried out. To obiain the shape of the
fluid domain at the next time-level, first the kinetic boundary condition is integrated such that the
new collocation points positions are obtained. The watetline on the sphere is then determined from
extrapolation of the free surface to the sphere in iis new (prescribed) position. Then its wetted
surface § is regridded, where the waterline shape is used. The last two aspects are described
in Section 4. By integrating from the previous timestep the new values of ¢ and ¢, along the
boundary are calcnlated (using the dynamic free-surface evolution equation on F) or updated
on Dirichlet and Neumann boundaries, respectively. Time integrations are carried out with the
classical fourth-order Runge-Kutia method.

This panel method is set up in a way such that, globally, its accoracy is of second-order in the
dimension of the panels. More detailed descriptions are given by Romate (1989), Broese (1993)
and van Daalen (1993). Broesze et al. (1993) give a concise description of the method and some
recent developments.

4 Body and waterline

In the present work we use an sphere in heave. Any point ¥ on its surface can be described as a
function of a polar angle ¢ in the z, y-plane and an azimuthal angle 9, thus ¥ = Y(w,6). This
body description is used in determining the waterline and in regridding the wetied body surface
5. For more general bodies we intend to implement a geometry description based on B-splines.

After the execution of a timestep, the positions of the collocation points in the free surface are
known, as well as the new position (and orientation) of the sphere. In order to determine the
waterline, we create a quadratic extrapolating curve as a function of a parameter & through three
neighbouring collocation points of which the first lies in a panel bordenng the waterline. A point
on this curve is denoted X(s). For the (closest) intersection point with the sphere it is reguired
that G(s,¢,9) = X (8) — ¥(w,d) = 0. This set of three nonlinear equations (one for each vector
component) is solved for s, ¢, ¥ using an iterative method. This procedure is executed for all
collocation points in panels bordering the watetline, as well as for the network boundaries in the
free surface that intersect the sphere. The latter yield the network corners in the waterline, The
waterline is determined by these intersection points. In the present method we do not evaluate
the motions of the waterline directly and therefore we have to tely on extrapolations of the free
surface.

Next the four network corners that lie in the waterline are used in the regridding of the wetted
body boundary 5. We have chosen to describe S using five networks, four of which are bounded
by the fifth network and the waterline, see Figure 2. In this way we prevent the use of triangular
panels. It also gives us a relatively large freedom in determining the panel-size distribution on the
sphere: this is simply a matter of choosing the positions of the corners of the fifth network in the
right way. Finally the collocation points on § are determined nsing the position of the waterline.



5 Hydrodynamic forces

We need to know the pressure pin order to obtain the reaction force exerted by the fiuid onto the
moving sphere. The pressure p is given by Bernoulli’s equation:

P=—ploz+d+;76-V4) . (1)

V¢ is computed from ¢,, which follows from the prescribed body motion and its shape and
orientation, and from the tangential derivatives which are approximated using finite differences.
@, satisfies a set of equations and boundary conditions similar to those for ¢ and is solved for in
a manner, which is described by Cointe et al. (1991) and van Daalen (1983).

On every panel (on the sphere) a local second-order approximation is made of the boundary shape
and of the pressure. The force on the sphere is then integrated using a nine-points Gaussian
method for each panel, thus yielding the total force on the body.

6 Experiments

The method described above is now ready to be used for calculations. The two-dimensional version
has already been validated for small-amplitude oscillations of a circle and a square and it has been
used successfully for large-amplitude oscillations of a square, see Berkvens and Zandbergen (1998).
In the months ahead we plan to carry out similar calculations using the three-dimensional method
for validation purposes,

In the experiments we will use a half-immersed sphere in a circular domain of sufficient cross
section and depth. As explained before there will be five networks on 5, four on F, four on A and
fiveon B. We expect to use up to 2000 panels on the domain bonndary, but we have the resources
to use more than 4000 panels. The sphere will be foreedly oscillated harmonically in the vertical
direction at amplitude small compared to the sphere’s radius and at frequencies near the resonance
frequency for the sphere when it is half immersed. This oscillation will be sustained during a few
periods. During this time the force signal on the sphere will be calculated, Since the amplitnde
is much smaller than the radius and since the frequency is of the order of the natural frequency
in heave of the half-immersed sphere, we expect almost linear behaviour of the finid-body system.
Therefore we expect that after a start-up interval, the force signal will be harmonic as well. This
signal will then be used to find the added-mass and damping coefficients of the sphere in heave
at this particular frequency. The results will be compared with previous results by Kudou (1977),
Pinkster (1980) and Prins (1995) in order to verify the quality of the results. Later we will use
the method for more generally shaped bodies and larger motions.
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Figure 1: Fluid domain and bounding surfaces.
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Figure 2: Top view of 2 sphere al rest in a domain similar to the one we will carry out the

calculations with. In the middle is the wetted part of the sphere divided inte five neiworks
containing 16 panels each. The surrounding free surface is divided into four networks containing
16 panels each. The heavy lines indicate the metwork boundaries. The grey shades give an
indication of the pressure distribution along the boundary when ihe sphere and the fluid are at
rest.



