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ABSTRACT: A complete linear theory to analyse a two-dimensional floating and liquid filled membrane
structure in waves has been presented. An approximate solution of the dynamic tension is developed
for checking the complete linear solution. Numerical results have been presented for the dynamic tension

and motions.

1 INTRODUCTION

The motivation for studying the problem of a two-
dimensional floating and liquid filled membrane
structure in waves is to further investigate the
hydroelastic and hydrodynamic effects of a long
flexible barge(tube) which can be used to carry
and transport oil and liquids lighter than water.
The shape of a two-dimensional floating and liquid
filled membrane structure in calm water is shown
in fig.1. The hydroelastic effect is important for
the hoop tension of the tube in waves. An approx-
imate solution for a long flexible barge in waves has
been presented by Zhao and Triantafyllou(1994).

In this paper we are going to present a com-
pletely linear theory to predict tension, mo-
tions and hydroelastic deformations of a two-
dimensional floating and liquid filled membrane
structure in heam sea waves. Before we carry out
the dynamic analysis, the static shape and tensions
of a flexible tube have been evaluated by a numer-
ical iteration scheme which is developed by Zhao
and Triantafyllou(1994). In our analyses, the mo-
tions, hydroelastic deformations and tension of a
floating membrane structure in waves are found by
a linear perturbation of the static solutions. The
hydroelastic deformations have been taken care of
in the body boundary condition. The Greens sec-
ond identity has been applied for the velocity po-
tentials which describe the fluid motions inside and
outside the membrane. For solving the total prob-
lem, the dynamic equations has been used for the
motions of the membrane. To verify the theory,
an approximate solution is developed to predict
the dynamic tensions in beam sea waves. The nu-
merical results have been tested and checked with
different physical relations and an approximately
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Figure 1: The shape of a two-dimensional floating
and liquid filled membrane structure in calm wa-
ter and a y-z coordinate system are shown. The
densities of fluid inside and outside the membrane

are p; and p, (pi < po)-

solution for the dynamic tensions.

9 THEORETICAL APPROACHES

2.1 Theoretical formulation for a complete linear
solution

A complete linear solution to predict dynamic ten-
sion and motions of a two-dimensional floating
and liquid filled membrane structure in beam sea
waves is presented here. Fig.l shows a typical
two-dimensional floating membrane structure in
calm water. The fluid densities inside and out-
side the membrane are p; and p,. The filling ra-
tio v is defined as ¥ = Ag/Amqz, Where Ag is the
area inside the two-dimensional membrane struc-
ture and A, is the area for the maximum fill-
ing. One assumes that p, is larger than p;, the
area inside the membrane is completely filled by
the fluid, the thickness of the membrane(skin of
the tube) is infinitely thin and one neglects the
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mass of the membrane. Further one assumes that
the amplitude of the incident wave amplitude is
small compared with the characteristic dimension
of the membrane. The problem is solved in the
frequency domain. Since the viscus effects are ne-
glected here, the problem may be solved by using
a potential theory. First we introduce two velocity
potential ®; = Re(¢re™t) and ®p = Re(¢poe™?),
where ®; is the velocity potential which describe
the fluid motion inside the membrane and ®¢ out-
side the membrane. Re denotes the real part. ¢;
and ¢o are complex. Both ®; and ®o satisfy the
Laplace equation

V20, =0, V20 =0 - (1)
in the fluid domains

The velocity potential @ is divided into

<1)0=<I)1+<I>2+<I)3 (2)

where @, is the velocity potential of the linear reg-
ular incident wave which can be written as

<I)1(y,z,t) — Re(%caeiwt—iky-{'kz) (3)

here g.i, (,, w, t and k are the acceleration of grav-
ity, the complex unit, the incident wave amplitude,

the circular frequency of oscillation, the time vari- .

able and the wave number; ®, is the diffraction
potential when the motion of the membrane is ig-
nored and ®; is the velocity potential due to the
motion of the membrane. w and k satisfies the
following dispersion relation

k= (4)

®, satisfies the following linear free-surface con-
dition

—w2<1>0+ga—§9—=0 on z=10 (5)
In our analysis each component of ®¢ in eq.(2)
satisfies the eq.(5).

The body boundary conditions for ®; and ®;
are
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Figure 2: The coordinate (s,n) and symbols used
in the eq.(10) and (11) are illustrated

and

= Vii on Sk )

where ‘77 7 and Sp; are the velocity for each
point on the membrane structure, the normal vec-
tor with the positive direction into the fluid(which
is outside the membrane) and the mean wetted
body surface.

The similar boundary condition is satisfied of
®;, namely

=Vn, on Sp (8)

ony

where Sg and n} are the mean surface of the mem-
brane and the normal vector with positive direc-
tion into the fluid(which is inside the membrane).

In addition ®, and ®; satisfy the radiation con-
dition. That means that the body can only gener-
ate waves which propagate away from the body.
The velocity potential ®, is solved by the nu-
merical method developed by Zhao and Faltin-
sen(1988).

Due to the hydroelastic deformation of the
membrane structure we need linear dynamic equa-
tions for the motions of each element of the mem-
brane in the @ and § directions(see fig.2). When
one neglects the mass of the membrane and as-
sume that thickness of the membrane is going to
zero, the following linear dynamic equations are
obtained(see for instance Triantafyllou (1990)).

do, o6
i Ts—=2 + Pp =0 (9)
s

— 1o ds

and
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oTp
5o =0 (10)

where s, (6 = 0, + 0p), Tp, T,,0,, 0p and Pp
are the length defined in fig.2, the angle defined in
fig.2, the dynamic tension, the static tension, the
time independent part of §, the time dependent

part of 6 and the dynamic pressure. Further Pp
can be written as

Pp = Pp— Pop—F,, (11)

where

oo
Pip = -—,01@—1 ~prgz’ on Sp

(12)
which is the dynamic pressure inside the mem-
brane due to the motions of the membrane. Here
z! is the vertical motion of each element on the
membrane. Ppp can be written as

od
Pop = "PO'E? - pogz’ on Sp

(13)
which is the dynamic pressure outside the mem-
brane due to the motions of the membrane.

And

(P, + ®,)
ot

Foo= —po on Sp (14)

is the excitation force due to the incident wave.

Based on the equations( from (1) to (14)) and
the assumptions we mentioned above, one may
solve the problem by a numerical method.

2.2 An approximate solution for predicting the
dynamic tension

To verify the numerical solution that we have pre-
sented in the previous section, an approximate so-
lution is formulated here for predicting the dy-
namic tension. The method is the extension of
the method developed by Zhao and Triantafyl-
lou(1994). The hydroelastic deformation is ne-
glected when we calculate the dynamic pressure
inside and outside the membrane.

We may assume the dynamic tension Tp can be
written as

oTp 0Tp o7,
T — + 24 D .
D 67}3 3 0773 13 + 877.3 3 +
oTp
a—ﬁ;F&z‘ (15)

which is dependent on the heave motion 73,velocity
73, acceleration 7j3 and the excitation forces F.,.

The coefficient %%, %ﬁf—, %% and 58_}%:1}_ are pre-
dicted by a quasi static analysis which will be fur-

ther expressed here.

Since the hydroelstic deformation of the mem-
brane is neglected here for a two-dimensional mem-
brane structure, the heave motion and the dy-
namic pressure outside the membrane can be cal-
culated by the method developed by Zhao and
Faltinsen(1988) which assumes that the body is
rigid. Based on the dynamic pressure components,
the corresponding dynamic tensions can be pre-
dicted by a similar method as Zhao and Triantafyl-
lou(1994) which is used to estimate the static ten-
sion. The only differences are the pressure outside
the membrane is the static pressure plus the dy-
namic pressure component, and the gravity of ac-
celeration of the fluid inside the tube will be g plus
the acceleration due to the dynamic force compo-
nent. Details about the approach can be found in
Zhao and Triantafyllou(1994).

3 NUMERICAL RESULTS AND VERIFICA-
TION

A computer program to analyse a two-dimensional
floating and liquid filled membrane structure in
waves has been developed based on the theoretical
procedure presented in the previous section. The
numerical cord has been tested at different level.
The details are ignored here.

The motions and tensions for the complete lin-
ear solution have been compared with the results of
an approximated solution. Fig.3 shown an exam-
ple of dynamic tensions and heave motions which
are predicted by the exact and approximate solu-
tions. It seems there are good agreements between
the results except in the frequency domain near
the natural frequency of the heave motion. This
is due to the hydroelastic deformations which has
not been included in the approximate solution.

The important part of this work is to predict
the dynamic tension of a floating membrane struc-
ture. The dynamic hoop tensions are dependent
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Figure 3: The dynamic tensions Tp, and the verti-
cal motions (s, {, and the relative motion |, — (3]
have been presented by the exact and approximate
solutions. (3 is the heave motion of the rigid body,
(o is the heave motion of the highest point on the
membrane and (, is the heave motion of the low-
est point on the membrane. Here R is the radius
of the membrane structure when v = 1.0, w is
the frequency of oscillation, g is the acceleration
of gravity, p, is the fluid density outside the mem-
brane, p; is the fluid density inside the membrane
and (, is incident wave amplitude.

on the incident wave length, fillings ratio and the
relative ratio between the fluid inside and outside
the membrane. Fig.4 show the dynamic tension as
function of incident wave length for different fill-
ings ratio and relative density of fluid. It seems
that the max. dynamic tension increase when fill-
ings ratio increases or the relative density p:/p,
increases.

4 CONCLUTION

A complete linear theory to predict the dynami.
tension and motions of a two-dimensional floating
and liquid filled membrane structure in waves is
presented. Numerical code and results has been
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Figure 4: The dynamic tensions Tp have been pre-
sented for different fillings ratios and fluid densi-
ties. The definition of symbols can be found in

fig.3

carefully verified and presented for different fill-
ing ratios and fluid densities inside the membrane.
An approximate solution of the dynamic tension is
developed and good agreement between the exact
and approximate solutions is obtained.
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