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The deformation of an elastic structure may significantly modify the hydrodynamic loads on
it. Kvélsvold & Faltinsen (1994) showed a drastic reduction in slamming loads on wetdecks
when hydroelastic effect is considered. Zhang, Yue & Tanizawa (1995) recently found about
10% reduction in impact force on an elastic wall due to impact of a plunging breaker. The
present study is aimed at a systematic numerical investigation on the hydroelastic effects
on wave loads and hydrodynamic pressures on a vertical elastic wall due to three different
loading conditions: sloshing of a standing wave in a wave tank; impact of a plunging breaker
with air trapped between the breaker and the wall; and impingement of a plane fluid jet
with a finite contact region.

For the fluid motion problem, we assume two-dimensional (fully-nonlinear) potential flow
in a rectangular wave tank. The governing equation is Laplace’s equation which is solved
by a boundary integral method based on an application of Cauchy’s integral theorem to
the complex potential (Vinje & Brevig 1980). On the free surface of the fluid, fully non-
linear boundary conditions are imposed and integrated following Lagrangian points. The
elastic wall is modeled as an elementary cantilever beam and represented in terms its dry
mode eigenfunctions. The dynamic equation for the modal amplitudes is solved using the
Newmark—43 method (e.g., Bathe & Wilson 1976). The coupling between the fluid and the
beam is implemented such that at each time step, the fluid motion is determined by solving
the boundary value problem with the normal velocity on the fluid-wall interface specified by
the velocity of the wall. The hydrodynamic pressure on the wall can then be calculated and
imposed as a beam loading to move the wall to a new position at the next time step. The
response of the wall is obtained and its velocity is fed back to the fluid and the process is
repeated.

Two issues related to the numerical scheme are addressed. One concerns the initial condition
to start the calculation. Since the wall is elastic and at rest initially, the initial pressure
distribution of the fluid on the wall has to be determined by a relation that balances the
pressure with the inertia of the wall at ¢ = 0 (Duncan & Zhang 1991). The other issue is
related to the stability of the numerical time integration and involves the introduction of a
generalized (instantaneous for the actual free-surface profile) modal added mass. This makes
it possible to simulate strong interaction cases such as one in which the wall is relatively soft
and light. Figure 1 shows a sample time history of the stable (with the added mass) and
unstable (without using the added mass) simulations for such a case.

In this coupled system, the time scales for characterizing the fluid motion, the effect of
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the trapped air (for the case of the plunger impact), and the response of the beam are
proportional to (ho/g)*/2, ho(p/Py)*/? and L?(M/EI)'/?, respectively. Here p is the density
of the fluid; g, the gravity acceleration; kg, the initial water depth; P, initial air pressure
in the air pocket; L, the length of the beam; M, the mass of the beam per unit area; F,
the elastic modulus; and I, the second moment of area of the cross-section of the beam,
respectively. For simplicity, time, length and mass units have been chosen so that p, g and
ho are unity.

For the case of standing wave sloshing in the rectangular tank with an elastic end wall,
figure 2 presents the ratio of the force increase on the elastic wall relative a rigid wall. Here
T\ (= 1.78L*(M/EI)"/*[(ho/g)*/?) is the non-dimensional first-mode natural period of the
beam, and the beam mass M is varied. The standing wave (linear) frequency is ~0.9. It
is seen that the force reduction due to hydroelasticity depends strongly on M but is not
sensitive to the change of Ty for 7} > 5. The pressure change at the middle of the beam
length is shown in figure 3, which shows a similar dependency on M as the forces in figure
2.

The hydroelastic effect becomes more complicated when an additional time scale is involved
such as that introduced by a trapped air pocket. This is the case of the impact of a plunging
breaker wave with air trapping we consider (see Zhang, et al. 1995 for details). As an
example, figure 4 plots the total force (above the still water level) for the rigid and elastic
cases. The maximum impact force reduction due to the hydroelastic effect can be as large as
20%. Preliminary results indicate that within a wide range of practical ET values, the mass
per unit area of the beam M is the dominant factor in determining the effect of hydroelasticity
on the wave-induced loads.

Finally, we consider the case of the impact of a water jet with finite contact width such
as the relatively flat portion of a wave front. Unlike the earlier examples, extremely high
impact pressures are expected and local hydroelastic effects become critial. Compressibility
of the fluid also needs to be considered to capture the high acoustic impact pressure at the
initial stage of the impact. The analysis here is somewhat analogous to that in Kvalsvold &
Faltinsen (1994) and will be presented at the workshop.
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Figure 1: Stress calculation with the generalized added mass (smooth curve) and without
the add mass (oscillating curve) versus time. The first-mode modal mass is 0.096 and the
first-mode added modal mass is 0.08.
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Figure 2: The ratio of the change of the forces on the elastic walls to the change of the force
on a rigid wall as the function of the first eigenperiod Ti. Fj is the force on the wall at ¢ = 0.
The dashed lines are the results obtained with the generalized added mass.
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Figure 3: The ratio of the change of the pressures at a fixed point on the elastic walls to
the change of the pressure at the same point on a rigid wall as the function of the first
eigenperiod. Fy denotes the pressure at the fixed point at ¢ = 0.
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Figure 4: Total force on an elastic wall with M = 0.2 and EI = 0.01 and on a rigid wall
versus time. The total forces are the summation of the pressure distributions on the walls
above the still water lever.
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