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INTRODUCTION

Recent successes in the numerical simulation of fully-nonlinear free surface flows in three
dimensions (e.g., Xii & Yue 1992) has opened the way for the solution of meaningful nonlinear
fluid-structure problems in marine applications. The direct extension of these techniques for
practical applications, however, still represents a significant challenge. The complications
are primarily associated with the proper treatment of the intersections of surface-piercing
bodies with waves, the need for robust moving grid handling, the appreciable computational
costs associated with large nonlinear domains, and, for the diffraction problem in particular,
the incompatibility of the prescribed initial condition for the (nonlinear) ambient waves with
the (no flux) boundary condition on the body.

We consider the numerical simulation of fully-nonlinear water waves interacting with surface-
piercing bodies. To demonstrate the present capabilities, we show computational results for
two nonlinear wave-body problems: (i) the diffraction of steep incident waves by a vertical
cylinder; and (ii) the radiation of waves by the large-amplitude oscillations of a floating body.
In addition to fundamental interest in the nonlinear forces and wave patterns, our study of
these model problems also serves to illustrate the solution to the aforementioned technical
difficulties.

NUMERICAL METHOD

We pose an initial-boundary-value problem for the scalar velocity potential of an ideal and
irrotational flow. The potential satisfies Laplace’s equation in the field, Neumann condi-
tions on instantaneous body (and bottom) boundaries, and exact kinematic and dynamic
conditions on the free surface. We use a mixed-Eulerian-Lagrangian (MEL) scheme which
integrates the free surface conditions in time explicitly by following Lagrangian points on
that surface. The method is thus not restricted to free surface elevations describable by
single-valued functions. At each time step, the Eulerian boundary-value problem for the po-
tential is solved using a boundary-integral-equation (BIE) formulation. Following Xii & Yue
(1992), we apply a direct (Green’s identity) formulation and employ high-order (quadratic)
isoparametric boundary element method (QBEM) for the solution of the BIE. The accu-
racy and efficiency of the method has been demonstrated, for example, in their study of the
kinematics of steep overturning three-dimensional waves.

The present work describes the extension of this nonlinear three-dimensional capability to
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problems involving surface-piercing bodies and our attempts at obtaining practically useful
nonlinear predictions. Some of the major areas of improvement and development include:

Modification of the double periodic Green function

A satisfactory treatment of the far-field closure is a fundamental question for nonlinear
wave-body problems in unbounded domain. Perhaps the most simple (theoretically but not
necessarily numerically) solution is to impose periodic condition. In Xi & Yue (1992)’s
original formulation for deep water with double periodic boundary condition, the Green
function is taken as the double summation of the infinite series of source. This choice of
the Green function results in a non-trivial unknown constant, which is proportional to the
potential at infinite depth and in principle varies in time, in the (Green’s identity) BIE. This
unknown is solved as part of the linear system by an introduction of the Gauss condition,
which essentially stipulates that there should be no net flux at infinite depth. We make a
simple modification to the Green function by subtracting the leading behavior at infinite
depth of the original Green function. This eliminates the extra undetermined constant from
the BIE. Significantly, we found that this also reduces the required number of iterations for
solving the resulting system by a factor of O(10).

Far-field closure using linear matching

Another treatment of the far-field radiation condition is by the matching technique. In
three dimensions, the energy density of diffracted and radiated waves must in principle
decrease inversely with radial distance. Thus, at some given radius selected on the basis of
wave amplitude, a matching of the nonlinear inner solution to a general linearized wavefield
should in theory allow nonlinear simulations to be carried out indefinitely in time. This kind
of linear matching closure was demonstrated for the case of (vertically) axisymmetric flows
by Dommermuth & Yue (1987a) who used a fixed matching boundary.

We extend such a matching to general three-dimensional problems using (transient) linearized
wave Green functions and quadratic boundary elements. Furthermore, to minimize the
nonlinear inner domain at any time, we incorporate a so-called body nonlinear treatment
(e.9., Lin & Yue 1990) so that the matching conditions are applied on a moving surface.
The resulting integral equation for the linearized outer solution now involves convolution
integrals over the matching boundary as well as a waterline integral along the intersection
with the free surface. The nonlinear domain is minimized by translating and deforming the
matching boundary according to local steepness of the waves. One of the major requirements
and difficulties of such an approach is the need for robust regridding of the Lagrangian (inner
free-surface) and Eulerian (matching) surfaces and their intersection.

Treatment of wave-body intersections

In the context of the MEL approach, where the solution must be integrated in time at
every node, the relevant error measure is the mazimum error. For this purpose, constant
panel method (CPM) turns out to be inadequate (cf., Xi & Yue 1992) since for mixed
boundary-value problems CPM converges non-uniformly typically for the maximum error
on the Dirichlet side of the Neumann-Dirichlet intersection line. This difficulty is effectively
removed when higher order BIE panels are used. One of the lowest order element that is
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still efficacious is QBEM. In addition to the expected approximately cubic maximum error
convergence with panel size, QBEM, which has nodes on the panel boundaries allows for
robust double-node treatment at the body-free surface (Neumann-Dirichlet) intersections.

Regridding used in combination with MEL

When applying MEL, fluid particles on the free surface may become clustered in regions of
high gradients in the flow field quantities. This time evolving deformation of the Lagrangian
grid in general result in the numerical degradation and eventual breakdown in the solution of
the BIE as panels become ever more distorted. The accurate and robust optimal regridding
based on the flow characteristics is important and often essential to ensure a successful long
time simulation.

Specification of initial condition for diffraction problem

In the context of a fully-nonlinear simulation, the specification and characterization of the
(non-linear) incident wave is critical to the success of the diffraction problem. We start
with the eract Stokes’ wave that may be modulated (e.g., Dommermuth & Yue, 1987b),
which is particularly suited to periodic boundary condition. Another problem with the
diffraction problem is that the prescribed initial condition for the ambient waves would
not in general be compatible with the zero-flux body boundary condition. In the absence of
special treatment, incident waves of moderate steepness would induce large error at the body
intersection and can cause the sirnulation to break down immediately. Several treatments are
proposed and investigated, among which are positioning of the strut according to the initial
field velocity of incident wave, modulation/modification of the initial free surface potential
near the strut, applying localized pressure to suppress initial jetting around the intersection,
and the implementation-of body boundaries which have deformability and/or permeability
that vary slowly to zero in time. .

Capability to treat periodic incident wave with current

Diffraction or radiation of waves in the presence of current is of science interest and en-
gineering importance. An interesting problem arises in the context of periodic boundary
conditions as to whether the body or its forced motions can in time change the magnitude
of the current. This question has direct computational implications since our Green’s iden-
tity BIE in general requires periodicity not only of the velocity but also the potential. We
are able to show that, for a simply-connected fluid domain, the non-periodic part (i.e., the
mean current) of the total potential is time invariant regardless of the existence of bodies or
their motions. Thus the mean component of the potential can be subtracted out (to yield
a periodic potential) from the BIE and re-enters the initial-boundary-value problem only in
the time integration of the free-surface boundary conditions.

RESULTS

The validity of the method is first confirmed by a systematic series of tests for convergence
and conservation of mass and energy. We focus our interest on two applications:

(1) The nonlinear forces and waves associated with the diffraction of steep Stokes’ wave by
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a surface-piercing cylinder. Recent field and laboratory observations in the context of large
offshore structures suggest that nonlinear diffraction mechanisms may be responsible for third
and higher harmonic excitations. The magnitudes of these excitations can be appreciable and
indeed critical in terms of resonant amplifications of the wave loads. The present computation
aims to provide a much needed confirmation of such nonlinear mechanisms.

(2) The nonlinear radiation problem associated with the forced oscillation of a floating body.
A problem of fundamental interest is the observation of modulated radial waves from an
axisymmetric body in heaving motion (e.g., a heaving sphere, Tatsuno et al 1969). Recent
analytic predictions based on a cross-wave model (Becker & Miles, 1992) under-estimate the
wave amplitude by an order of magnitude suggesting the possible importance of nonlinear
effects not accounted for in the analysis. The resolution of this fundamental problem requires
a nonlinear three-dimensional wave-body capability and is a natural candidate for the present
code (with a matching far-field boundary).
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