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1 Introduction

A full-nonlinear method to simulate three dimensional transient motions of floating bodies in waves will
be presented. This is a time domain method to simulate Euler’s equation of ideal fluid motion coupled with
the equation of solid body motions. Introducing L.Prandtl’s nonlinear acceleration potential, which spacial
derivative gives the acceleration of fluid particle, Euler’s differential equation of the ideal fluid motidn is
converted to the integral equation of the acceleration potential. The boundary condition of the acceleration
potential on the body surface is systematically derived from the kinematic relation between the acceleraition
of the solid body and the accerelation of the fluid particle on the body surface. Since this kinematic
boundary condition is a function of the body acceleration, the boundary values on the floating body! can
not be evaluated explicitly. To overcome this point, the unknown acceleration of the free floating body is
eliminated by substituting the equation of body motion into kinematic condition, then implicit body sur:face
boundary condition is derived. This is the kinematic and dynamic condition which guarantees dynamic
equilibrium of forces between ideal fluid and the solid body at any instance. With the free-surface boundary
condition of the accerelation potential, the boundary value problem for the accerelation field is formulated.
A formulation for the numerical method is also given.

2 Euler’s equation of ideal fluid and acceleration potential

First of all, let us define the nonlinear acceleration potential from Euler’s equation of the ideal ﬁuld
Non-dimensional Euler’s equation of the ideal fluid ( p = ¢ =1 ) can be written as
D o .
a:-D—;,:a—t’+(v-V)v=—Vp—Vz, (1)
where v and a are velocity and acceleration vector of the fluid particle respectively. Introducing the
velocity potential ¢ , equation (1) can be written as i

_DVe _0V¢ ¢ d¢

= =3 t (Ve V)Ve=V— +V((V)> V(at (w)) ;(2)
Here, let us define the acceleration potential ® as :
8¢

¢ = B + (V¢) - (3)

then fluid acceleration is expressed as a = V@ . This is L.Prandtl’s nonlinear accerelation potenft.ial.
The acceleration field described by this acceleration potential is irrotational, but dose not satisfy Lapk*ce s
equation V2@ # 0 because of the nonlinearity of the second term of the rlght; side of equation (3). Erom
equation (1),(2) and (3), the accerelation potential is written as .

® = —p— Z + const. ( Integral constant can be set to zero. ) , (4

therefore physical meaning of the acceleration potential is very clear. Despite of this clearness, the ac-
celeration potential is rarely used to solve the hydrodynamic problems. The reason seems to be that the
acceleration field is not necessary solved in the framework of linear theory. But in addition to this reason,
there exist two unsolved problems. These are (1) the body surface boundary condition of the acce]era,tion
potential is not clearly obtained and (2) the acceleration potential is nonlinear and dose not satisfy Laplace’s
equation. This study is aimed to overcome these two problems.
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3 Boundary condition of the acceleration field

3.1 Acceleration of fluid particle on the body surface

In order to get the kinematic body surface boundary condition, let us first study the acceleration of fluid
particle sliding on the body surface. As illustrated in Fig.1, the space fixed reference frame O~ XY Z and
the body fixed reference frame o — zy: are used. The origin o is situated at the center of gravity of the
body and the frame o - xy:z is moving with translating velocity v, and angular velocity w . In Fig.1, P
is a point fixed to the fluid particle sliding on the body surface. Using the positioning vectors R, R, and
7 illustrated in Fig.1, the position, velocity and acceleration vector of point P are expressed as

R=R,+r (5)
17:R04-f=v0+[17]+wxr (6)
a=R,+7

=a,,+[a]+w3<(wxr)+2wx[v]+cb><r, )

where [v] and [a] are velocity and acceleration of point P observed from o — zyz frame respectively.
With these kinematic formulae of velocity and acceleration of point P | the body surface kinematic boundary
condition for the acceleration field is derived in the next section.

Fig.1: Frame of reference

3.2 Body surface kinematic boundary condition

Similar to the kinematic boundary condition of the velocity field, the kinematic boundary condition of
the acceleration field can be expressed as scalar product of the acceleration vector of the fluid particle and
the unit normal vector of the body surface at the fluid particle locates. That is

8—q)_n V®=mn-a, (8)
on

where m is the unit normal vector of body surface at point P . Substituting (7) into (8) gives following
relation 50
—=n-lal+n (@G, +wx7)+n wx(wxr)+n 2wxv] 9)

on

This is the kinematic body surface boundary condition for the acceleration field. Since the fourth term of
the right side includes velocity {v], this boundary condition depends on the velocity field. So, let us rewrite
equation (9) with velocity potential ¢ . First, considering the equation (6), [v] can be written as

Pl=v-v,—wxr=Vd—v,—wXr. (10)
Second, normal and tangential components of [a] to the body surface can be written as

[aln = =k, [0)*,  [a]s = [0, (11)
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where k, is the normal curvature of the body surface along with the path line of P . The value of [aj s In
equation (11) is unknown, but n - [a], is zero because n and [a], are orthogonal. So, n - [a] becomes

n-la]=n-([a], + [a],) =n [a], = =k, [V])? = —k, (Vo — v, — w x 7)°. (12)
Finally, the kinematic boundary condition of the acceleration field is reduced to be
0%
o = ~ky (Vo—v,—wxr)24+n-(a,+wxr)
+n wx(Wxr)+n 2wx (Vé—v, —w x7). (13)

3.3 Euler’s equation of 3-D solid body motions | |

The second term of the right side of Equation (13) includes the body acceleration a, and w . Therefore
the body surface boundary condition can not be determined explicitly when the body acceleration is un-
known. In such a case, the equation of body motions can be used to eliminate the unknown body acceleratxon
from equation (13). The generalized Euler’s equation of 3-D solid body motions is given as

[m 0 0 0 0 0 Aoz ' i
6 m 0 0 0 O oy
0 0 m O 0 0 Qo .
0 0 0 I:r.r Ia‘y szz U‘J:c
0 0 0 I, Iy Iy Wy
L 0 0 0 L. Ly I. w; (14)
fe :
0 fy ;
0 _ f: !
+ 3 (1.2 = Iyywyw; — Ipywswe + Lewewy + Iy (w2 — w?) = M, (’ i
(Ier = 1.; Ywawy — Iyzwxwy + Irywyw: + Lo(w; — wz) jwy
( (Tyy — oo Jwowy — Lowyw, + Iy w.w,e + Ly(w? - “’3) M,
and its vector form can be written as
M- a+8=F, (15)

where M is the generalized inertia tensor of the body, a = (a,-% + a,yj + ao,,k Wet + wyJ + cbﬁl.k)
is the generalized acceleration vector of the body and F = (fet + fyg + f.k, Myt + Myj + M, Ic) is
the generalized force acts on the body. Vector B, which is the second term of the left side of equation
(14), appears because o — zyz frame is rotational frame. Now, introducing the generalized normal vector
N = (net +nyj+n.k, (nys—n.y)i + (n.2 — nez)j + (ney — nyx)k) , the generalized hydraulic force is
gl\'en as

ﬂ_LpN@—/(Q Z) Nds. (16)
Here we denote the other force (thrust, gr;a;ny etc.) as F, , then total force acts on the body is writtex%n as
F=Ff+Fg=:/S(—<I>-—Z)Nds+Fg. (il7)
Equation (15) and (17) gives the generalized Euler’s equation of 3-D body motions coupled with fluid motiion
M'a+ﬂ=L(—¢—Z)Nds+Fg. (18)

3.4 Implicit body surface boundary condition

The unknown acceleration is included in the second term of the left side of equation (13), and the other
term can be explicitly evaluated from the solution of velocity field. So, let denote the other term as ¢ ifor

simplicity
g=—ky (Vo-v,—wxr) +n - wx(wWxr)+n 2wx(Vé—v,—wxr). (|19)
Next, the second term can be written much simpler with the generalized acceleration o and the generahbed

normal vector N as
n (a,+twxr)=n-a,+w-(nxr)=N-a. (;20)
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Then, equation (13) is simply written as

0%
Eliminating the generalized acceleration from equation (18) and (21), the implicit body surface boundary

condition
od

%=N-M'1-/ —q>Nds+N~M"1.{/ZNds+Fg—ﬂ}+q (22)
. S, S

is finally derived. This condition gives the relation between the acceleration potential & andits flux 0®/dn
on the body surface. i

3.5 Free-surface boundary condition
From equation (4), following free-surface boundary condition is given.

Pon fs. = —Z ~ Patm (23)

4 A formulation for numerical method

As mentioned before, the acceleration potential ® does not satisfy Laplace’s equation. So, @ is not
adequate for numerical method like BEM. But equation (3) shows that the nonlinear part of & can be
explicitly determined from the solution of velocity field. Therefore it is not necessary to solve the nonlinear
part with & . Let us subtract this part from @ and define pseudo-acceleration potential ¥ as

0¢ 1
V=—=0--(Vs)®.
2 =9 2(V9) (24

Now, ¥ satisfies Laplace’s equation. So, with given boundary conditions, boundary value problem on ¥
is easier to be solved than that on ® . The boundary condition for the pseudo-acceleration potential ¥ is
easily obtained from equation (21),(22) and (23) as follows.

¢ Body surface boundary condition

ov d (1 9
-8-1-;_N-a+q—-6‘-;;<§(V¢)> (25)
o Implicit body surface boundary condition
-(?-\E:N-M'l-/ —~¥ Nds
On s,
-1 1 9 0 (1 o
+N M [ (2-5(V97) Nds+Fy =By +q- 5 5(V6) (26)
CR 2 671 2
o Free-surface boundary condition
1 2
Von fs. = ~Z — Patm — ’2'(V¢)‘ (27)

5 Conclusion

1. The body surface boundary condition of nonlinear acceleration potential is systematically derived.
2. Substituting the equation of 3-D body motions into the body surface boundary condition, the implicit

body surface boundary condition is derived. )
3. With the free-surface boundary condition, the mathematical formulation of the boundary value problem

on the acceleration potential is given.
4. For numerical method like BEM, the boundary value problem on the pseudo-acceleration potential is

also given.
5. Some numerical results of full nonlinear floating body simulation in waves will be presented at the

workshop. The results show that the conservation law of mass, momentum and energy are nicely
satisfied.
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DISCUSSION

van Dalen, E. F. G.: I recall that we have discussed the technique described here in VaJ! de
Rueil (1992) already. Shortly after, I completed my PhD thesis (1993) which includes a
profound description of the combination of V2$, = 0 in boundary integral form and| the
hydrodynamic equation of motion for the body. It surprises me that you have not tdken
notice, dlrectly or indirectly, of the work, whereas others have (e.g. Wu, Ma and Eaﬂock
Taylor, in this workshop). For completeness, I add the reference here: "Numerical and
Theoretical studies on water waves and floating bodies"., PhD thesis, University of Twehte
Enschede, The Netherlands, 1993.

Tanizawa, K.: Thank you for your comment. I also recall the discussion in Val de Rueil.
At that time we confirmed to each other that we have almost the same idea, and I informed
you that I have already published a paper on the idea in 1990. Since this paper was written
in Japanese, I sent you the English translation shortly after the discussion in Val de Rueil, but
I didn’t receive your thesis when you finished it. This is the reason why I couldn’t refer to
your work. But now I have received your PhD thesis after this workshop. I will willingly
add your PhD thesis to my references from now on.

In the oral discussion at the workshop, you pointed out that my talk on this topic was exactly
the same as your work. But, it is not the same. I think you were talking about the idea.
Yes, your idea is the same as mine described in the 1990 paper. But, this time, I gave the
exact formulation for 3-D full-nonlinear problems. The important points of my work are:

1) Nonlinear acceleration potential is taken into consideration.

2) The kinematic body surface boundary conditions for this nonlinear acceleratlon
potential can be obtained by a Lagrangian derivation.

3) The nonlinear term can be shifted from the governing equation to the boundary
condition for the numerical computation. As a result, nonlinear terms appear in| the
boundary conditions.

Of course, we can apply the same idea to construct the simultaneous equations of ﬂuld
motions and floating body motions with this nonlinear acceleration potential.

Kring, D.: Have you studied the exact origin of the numerical time derivative of the
potential. From my experience, it stems only from the instantaneous component of the
potential. Our experience with the time derivatives agrees with your observations.

Tanizawa, K.: I agree with your comments. The time derivative of the velocity potef:mtial
should be determined from the instantaneous conditions which guarantee dynamic equilibrium
of forces between fluid and body, and should not be approximated by backward ﬁrnite
differences. I think the boundary value problem for the nonlinear acceleration potential which
I have formulated here can be a consistent answer to determine the time derivative ofl the
velocity potential. -
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