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1. Abstract

A Rankine panel method developed for the treatment of the forward-speed seakeeping
problem of ships is here extended to the solution of the zero-speed linear, second- and
third-order diffraction of regular or random surface waves by floating bodies of arbitrary
shape. The objective of this study is the development of a three-dimensional
computational method for the simulation of the springing and ringing loading
mechanisms of offshore structures in regular random waves.

2. The Rankine Panel Method SWAN

As with most methods employing the Rankine source as the fundamental singularity in
Green’s theorem, SWAN distributes panels over the body surface and part of the free
surface. The unknown velocity potential over each panel is approximated by a bi-
quadartic spline which allows the flow velocities and their first gradients are obtained as
part of the solution. Details may be found in [1].

An essential attribute of the method is the use of a dissipative beach as the means to
enforce the radiation condition. The proper selection of the dissipation mechanism and
beach size allow the absorption of most of the radiated and diffracted wave energy.
Figure 1 illustrates the typical computational grid around a cylinder, where the outer
annulus coincides with the beach. Computations will be presented demonstrating the
effectiveness of this method of enforcing the radiation condition in the time domain. |

Another feature of SWAN is the use of two unknown state variables, the velocity
potential ¢ and wave elevation . This choice has the important property that it requires
the computation of up to second gradients of any of the two state variables in the third-
order problem, which may be handled easily by the quadratic spline approximation of ¢
and ¢ over the free surface mesh.
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3. Free Surface Conditions

The nonlinear dynamic and kinematic free surface conditions take the familiar form
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The linear, second- and third-order free-surface conditions follow upon introduction in
(1) and (2) of the perturbation expansions
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Due to lack of space the third order condition is not reproduced here but as in the second
order problem up to second derivatives of @ and & appear in the right-hand-side forcing
terms.

4. Body Boundary Condition

In the diffraction problem, the body boundary condition takes the simple form
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to all orders, where ¢p and ¢, are the incident and diffraction velocity potentials,
respectively. The linear. second- and third-order incident wave potential in a
monochromatic or random environment may be obtained by the method developed in [2].

5. Computational Issues

The solution of the free-surface problems formulated in Section 3 proceeds in a direct
manner. All free-surface conditions are linear and forced by lower-order solutions of the
two state variables. Since panels are distributed over the free surface, all desired spatial
and temporal gradients of ¢ and & become readily available as part of the solition.
Moreover, the selection of a common panel mesh over the body and the free surface to all
orders, permits the computation of the influence coefficient matrix once for the linear,
second- and third-order solutions and all time steps.

As expected, the appropriate size of the beach was found to increase monotonically with
the spatial wavelength which must be resolved accurately. Therefore, identifying a priori
the range of wavelengths which must be treated in the linear, second- and third-order
problems permits the selection of a free-surface mesh which allows the computation of
the respective solutions with desired accuracy.

Figure 2 compares the linear sway added-mass and damping coefficients of a truncated
circular cylinder computed by WAMIT and SWAN over a broad range of frequencies.
The very good agreement, particularly for the damping coefficient, confirms the
performance of the method in the linear problem.

The effectiveness of the beach is not expected to deteriorate in the second- and third-
order problems over the wavelength regime considered in the linear problem.
Computations will be presented for the the second- and third-order wave disturbance and
exciting forces on a truncated circular cylinder, illustrating the performance of the
method.
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DISCUSSION

Clément, A. : The physical meaning of the extra term you add proportional to € is clearly
a mass flux across the surface, removing potential energy. Is there a physical interpretation
of the second term and how can you ensure that this term is always dissipative?

Sclavounos, P. D. & Kim, Y-W.: Indeed the term proportional to £ is a mass removal term
which should be dissipative. The second term is often referred to in the literature as a
Newtonian cooling which I find difficult to interpret in classical mechanical terms. Yet, it is
possible to show that the combination of the two terms in the beach free surface condition is
dissipative, by a frequency domain analysis. The substitution of a harmonic wave component
in the free surface condition yields a dispersion relation which can immediately be seen to be
dissipative, i.e. the frequency corresponding to a real wavenumber has a uniformly negative
imaginary part for all wavenumbers. Our numerical experiments confirm this property.

Kim, M-H. : If you want to solve the 2nd order difference frequency problem, you have to
deal with the 2nd order free waves whose wavelengths are usually very long. How can you
apply your numerical beach technique in such a case?

Sclavounos, P. D. & Kim, Y-W.: We are not interested in solving the 2nd order difference
frequency problem. Our objective is to model accurately the sum-frequency and third order
problems as they are known to affect the high-frequency end of the force spectrum on floating
structures. In principle we expect our numerical beach to be able to handle long-wavelength
disturbances if its distance from the body and its size are properly chosen. Yet, it is important
to recall that such long wavelengths carry a small amount of energy and their accurate
modelling may not be as important as that of shorter wavelengths in typical wave spectra.

Faltinsen, O. a) It is important to be sure about the accuracy in the linear problem for small
frequencies when in the future you apply your method to ringing. Errors at low frequencies
may have consequences for higher harmonic loads of importance to ringing.

b) I do not understand the meaning of Rayleigh viscosity for nonlinear wave radiation and
scattering problems.

Sclavounos, P. D. & Kim, Y-W. a) We agree that in principle we need to be careful about
the accuracy of our numerical technique at low frequencies in connection with the solution
of the third order problem and the prediction of ringing loads. We have tested the method for
non dimensional wavenumbers ka (a is the cylinder radius) of less than 0.5 with very good
accuracy. So we expect the method to be reliable in the prediction of the higher harmonics
of importance to ringing. Also, the amount of energy carried by low-frequency primary
harmonics corresponding to non-dimensional wavenumbers less than 0.5 will be tempered
by the typical shape of sea spectra which carry very little energy below a certain low cut-off
frequency.

b) we are not solving a fully nonlinear problem but rather a sequence of linear ones.
Moreover, far from the body the free surface flow asymptotes to a linear one. The dissipative
mechanism implemented on our beach is simply designed to remove energy for all




wavelengths. The use of the Rayleigh viscosity concept is merely a way of explaining why
energy is removed rather than added into the fluid domain. By virtue of the linearity of the
linear, 2nd and 3rd order free surface conditions the mechanism for removing energy is the
same in all three problems. In response to the question by Rod Rainey which follows, we
have computed the sum-frequency vertical second-order force on a truncated cylinder and
have found that the numerical beach works as well in the second-order problem as it does in
the linear case.

Rainey, R. C. T.: I believe that your finding that the 2nd order problem is unaffected by the
far field is special to the geometry you have chosen, i.e. the bottom mounted cylinder. For
cylinders of deeper draught like the TLP legs, the "far-field" driven microseism effect
dominates the 2nd order vertical loads in all but the longest waves. Nick Newman (the
following day) also made this point. The implication here is that the damping of the far field
wave disturbance by the numerical beach will be detrimental to the predictions of the
second-order vertical force which is dominated by far-field effects.

Sclavounos, P. D. & Kim, Y-W.: As a result of a fax communicated to us by Rod Rainey
and the same point made by Nick Newman the last day of the Workshop, we went ahead and
computed the second-order vertical force acting on a truncated cylinder for which benchmark
computations have been carried out by M-H Kim. A page illustrating very good correlation
of our results with M-H Kim’s has been made available to the Workshop organizers for
inclusion in the discussion. We have found a clear lack of sensitivity of the vertical
second-order force on the distance and size of the beach which was selected as in the
computation of the second-order sway force.

So it is likely that the dependence of the vertical second-order force on the far field wave
disturbance stated by the discussers is the result of the mathematical technique used in its
definition and interpretation, rather than a genuine physical effect. Our numerical algorithm
suggests that it is not the latter.
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