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Abstract

In this paper step-response functions are used to calculate the hydrodynamic coefficients and drift
forces for a two-dimensional problem of a cylinder of infinite length. The equation of motion will
be written in a general form containing a convolution integral of the step-response function. The
response function is written as a finite sum of Laguerre polynomials in order to make the function

both smooth and asymptotically correct. The effect of forward speed on the response function will
be studied.

Introduction

In the past much attention has been paid to the calculation of both the hydrodynamic coefficients
and the drift forces of a ship. Most of these calculations were done under the assumption that the
incoming wave was sinusoidal. This assumption was made in order to simplify both the equation
of motion and the numerical algorithm, and gave rise to frequency-domain analyses.

However, it is clear from elementary water-wave knowledge that ocean waves are far from sinu-
soidal. Using the frequency domain, it is assumed that the waves can be decomposed in several
harmonic waves. For each frequency separate calculations have to be carried out. The forces
on the object can then be calculated using the Fourier-transform of the incoming wave. Inverse
Fourier-transforming then gives the time history of the actual force.

The time domain, however, allows us to simulate the full wave itself, thus needing only one cal-
culation per wave. Furthermore it allows us to calculate the hydrodynamic coefficients for all
frequencies in one single calculation. Thus it is very useful to drop the assumption of harmonic
waves and to study general time signals instead.

Prins 2] developed an algorithm to solve the time-dependent equations using a boundary-integral
method. The absorbing-boundary condition used in that study only absorbs waves of one specific
frequency. Thus a more general condition is needed in order to absorb the outgoing waves. This
method has been developed by Sierevogel and will also be presented at this workshop. Further-
more the equation of motion has to be modified. In this equation, the added mass and damping
coefficients depend on frequency; they are replaced by a memory integral over the step-response
function. Then the hydrodynamic coefficients can be calculated using this response function. The
results found will be compared with the results of Prins [2] and with Vugts [3].

Mathematical model

The mathematical model used in this study is the same as used by Prins [2], based on potential
theory and linearization around the double-body potential. However, because we want to study
general time signals, the absorbing-boundary condition and the equation of motion have to be
adapted. A boundary condition which absorbs general time signals has been developed by Sierevo-
gel and can be applied close to the ship. The equation of motion has to be rewritten according to
Ogilvie [1]. He showed that this equation should be written as an integro-differential equation:
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The matrix function K (t) is the step-response matrix for the hull, which is not dependent of
frequency. The matrices A and B only depend on the geometry of the hull and the forward speed.
Note that they do not depend on frequency. The added mass and damping as defined in the
frequency domain can be calculated using

Alw)=4A- —/K t)sin(wt)dt (2)
and
Bw) =B+ / K () cos(wt)dt . 3)
0

This means that once the hull-dependent matrices K (t), A and B are known, the added mass and
damping can be calculated for every relevant frequency.

To calculate the hydrodynamic coefficients we have to prescribe a forced motion of the ship. This
displacement function must contain enough information for all frequencies of interest and must be
twice continuous differentiable at ¢ = 0. A displacement function which meets these demands, is
given by
0 t<0
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The sine functions are scaled in order to ensure that all frequencies equally contribute to the
velocity. The function is damped by the last factor in order to make it continuously differentiable

in ¢t = 0. The constant ¢ is positive. Tests showed that three frequencies are enough to have
sufficient information throughout the frequency-domain of interest.

Sum representation using Laguerre polynomials

The most straightforward way of calculating the step-response function is by using a least-squares
method on the different forces calculated from the equation of motion and from potential theory.
However, the system of equations will be under determined, thus yielding possible sources of
errors. If we would allow every possible value of K at any time ¢; without demanding some sort of
continuity, the result for K'(t) might include delta pulses superimposed upon the wanted function.
These delta pulses would alter the result for A considerably. Thus we have to require that K (t)
is a smooth function of time.

An elegant way of imposing continuity in time upon the step-response function is expressing the
function in terms of a sum of orthogonal polynomials. To avoid infinite sums, the orthogonal
polynomials should have the same behaviour as the function we want to calculate: a damped,
oscillatory function. This requirement is fulfilled by the generalized Laguerre polynomials. Thus
we may write
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The function &(t) is assumed to be small and to decay with increasing N. The scale function o
1s introduced in order to match the time scale of the Laguerre polynomials with the time scale of
the step-response function. The coefficients ¢, can be determined using a least-squares fit on the
equation of motion (1). The number of terms in the sum-representation of K;;(t) is much smaller
than the number of time steps, thus yielding an over-determined system of equations.

To improve the result for the step-response function some analytical knowledge about the behaviour
of the function has been used in the least-squares fit. Because the damping for zero frequency is
zero, we can conclude from (3) that

0
/Kij ()t +b;;=0 . (6)
0
Furthermore we can invert the cosine transform of the step-response function:
[oe]
2 -
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From this we can conclude that

aI{,'j _
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Imposing the latter condition improves the results close to ¢ = 0 considerably, which is a sensitive
part of the step-response function. Equation (6) improves the results for ¢ — oo, which are not
part of the fit. However, the asymptotical behaviour is necessary for the calculation of the added
mass and damping coefficients.

Results

The results presented in this section are calculated using the displacement function as discussed
in the previous section. The time step used was At = .004; the time integration lasted 1000
steps. The grid size was chosen such that even the shortest wave was represented accurately. The
absorbing boundary was adjusted according to the guidelines of Sierevogel based on the lowest
frequency.

) 0.04r
04 K.,
0.3} 0.03
0.2} 0.02
otff
0.1t 0.01f;
0..
0.
-0.01}
-0.1
0 02 04 06 08 ) 1 0 02 04 06 08 1
Figure 1: Step-response function Figure 2: Step-response function
K,,(t) for three velocities. K, (t) for three velocities.

Figures 1 and 2 show the step-response functions in heave for the z— and z—direction for Fn =
0,.07, and .14. The value of K,,(0) depends only little on the velocity U. However, the function
seems to steepen for small ¢, and to deaden less quickly for large £. This means that the influence
of a disturbance is much longer perceptible for higher velocities. The function K, (t) seems to

203




depend linearly on the velocity. For zero forward speed, this function is of course zero. The
response function for Fn = .14 is ’exactly’ twice the function for Fn = .07. This result has been
obtained despite the fact that second-order terms in the velocity were taken into account in the

free-surface. It implies that the coupled hydrodynamic coefficients depend linearly on the forward
speed.
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Figure 3: Added mass coeflicient in
heave, Fn = 0.
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Figure 4: Added damping coefficient in
heave, Fn = 0.
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Figure 5: Added mass coefficient in

Figure 6: Coupled added damping co-
heave.

efficient in heave.

In figures 3 and 4 the added mass and damping coeflicients are given and compared with calculations
of Prins [2] and Vugts [3]. The agreement with Vugts for the new results is much better than for
the old results. Figures 5 and 6 show the added mass and coupled added damping coefficients
calculated using the above step-response functions. The drawn lines represent the old calculations;
the circles and asterisk the new ones. Both the added mass and the coupled added damping
coefficients agree very well with the old calculations.
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DISCUSSION

Bingham, H. B.: This is an interesting technique and appears to produce very nice results.
As I understand it you solve a Volterra integral equation, where the kernel is the body motion
x;(#), to get the step-response function Kj; (f). Can you show that this integral equation has
a unique solution in general, or at least for the motion that you are using?

Prins, H. J. & Hermans, A. J.: In general this integral equation does not have a unique
solution. Only signals with infinite frequency-domain support will render a unique solution
for K(#). For signals with finite support, the solution for K(¢) will only be unique within this
support in the frequency domain. This means our results for K(f) may differ from the true
K by some very slow and very fast oscillations. However, for the results we are interested
in, the added mass and damping, this is of no harm within the support of the forcing signal.
Extrapolation outside this range is questionable, and will be the subject of investigation in the
future.

Clément, A.: You mentioned possible numerical difficulties which may occur when applying
an actual step motion to compute the step response function. We use actual step motions in
our numerical basin (i.e.: V(f) = 1/At during Af) without special trouble. Could you explain
why it is not possible in your approach?

Prins, H. J. & Hermans, A. J.: It is indeed possible to use such an approximation for the
delta-pulse in the velocity. The forces for this function can easily be calculated using our
potential theory program. However, in order to establish the step-response function, we have
to know the time-derivative of the velocity function, see(1). So our displacement function has
to be twice differentiable for all #. If not, the response function is poorly approximated.

Newman, J. N.: The time signal input which you used has two spectral peaks and a "basin"
at intermediate frequencies where the energy is much smaller. Why did you use this
particular input?

Prins, H. J. & Hermans, A. J.: This function is based upon a harmonic system: 3 harmonic
waves and a damping factor: the last distributing the energy over different frequencies. We
made this choice, because it was easy to implement. We realise that better choices could have
been made, but it appeared that this function contains enough energy for the relevant
frequencies.
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