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1. Introduction

The maximum elevation of the free surface at the intersection of a body, generally known as ‘runup’,
is important from the standpoint of predicting the occurrence of wave impact on offshore platforms.
In extreme conditions the runup can be affected significantly by nonlinear effects, and predictions
based on linear theory generally underestimate the runup. Within the framework of the conventional
perturbation expansion, results for second-order runup have been presented by several authors.

In extreme wave conditions, where the wave period and wavelength are relatively large, a dif-
ferent asymptotic approach can be followed along the lines of Faltinsen, Newman and Vinje (1994),
referenced hereafter as ‘FNV’. The velocity potential consists of the usual linear solution plus a
nonlinear component 1) which is derived from a novel perturbation expansion with the fundamental
assumptions that the wave amplitude A and the cylinder radius a are of the same order, and both are
small compared to the incident wavelength. The nonlinear potential is forced by an inhomogeneous
Neumann boundary condition on the oscillatory horizontal plane which moves up and down with
the incident wave. The nonlinear potential ¢ includes third order components proportional to A%a
and A3. The forcing is significant only within the inner region where the distance from the cylinder
and free surface is O(a). The linear solution applies in the complementary outer region, where these
distances are comparable to or large compared to the wavelength.

The work of FNV was motivated by observations of ‘ringing’ on platforms in extreme waves.
In FNV the incident waves are regular, the cylinder is fixed, and it extends vertically throughout
the fluid of infinite depth. The main emphasis is on the evaluation of the horizontal wave load and
force, particularly the components which are of third order in the wave amplitude and oscillatory
at the third harmonic of the fundamental frequency. This analysis has been extended to the case of
irregular waves by Newman (1994), referenced hereafter as ‘N94’, and Faltinsen (1995) has derived
the more general extension applicable to slender cylinders of varying radius. In the present work
the wave runup is evaluated to third order, using the approach described above. This requires the
computation of additional Fourier components of 1 which do not contribute to the horizontal force.
In addition to this third-order extension a comparison is given below of the second-order runup with
computations based on the conventional diffraction analysis.

2. The velocity potential

Following FNV, the velocity potential is derived in the form ¢ = ¢p + 1, where ¢p = @1+ s is
the linearized solution of the diffraction problem, including the incident and scattered components,
and ¥ is the nonlinear correction. Cartesian coordinates (2, y, z) are defined with z = 0 the plane of
the undisturbed free surface, z = ( the exact free surface, and z < { the fluid domain. Long-crested
incident waves propagate in the +z-direction. In regular waves the corresponding linear potential is

b1(22,) = Re{ (g4 /w) exp(K z — iKz + iwt)}. (1)
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Here A is the wave amplitude, g is the acceleration of gravity, w is the radian frequency and K = w?/g
is the wave number. Cylindrical coordinates (r,0) are defined such that z iy = r*®. A fixed circular
cylinder with radius » = a is considered, and the boundary condition ¢, = 0 is imposed on r = a. It
is assumed that K4 = € << 1, and that A/a = O(1). Thus Ka = O(e).

The solution can be extended to include long irregular waves following N94, if the incident wave
is described more generally in terms of the potential ¢, horizontal velocity u, and velocity gradient
Uy, all evaluated on the axis » = 0. With these definitions the linearized solution for the diffraction
potential can be expressed in the inner region »r = O(a) in the form

ép =¢ + u(r + a®/r)cos8 — La’u,(loglKa+v) - T au,
2 2 4

2)
+ tu, [r2 + cos 20(r? + a*/r?) — 24? log(r/a)] + o(e®). (
The principal boundary conditions for the nonlinear potential ¢ are
Y, =0, onr=a, (3)
and
Yy + g¥. = —2Vo -V, — ‘V¢‘ V(V¢)?, onz=¢(. (4)

The leading-order contributions on the right side of (4), due to the first-order potential ¢, are of
order € in the inner domain and vanish to this order in the outer domain. Thus the nonlinear
potential is forced only in the inner domain, and the boundary-value problem can be reformulated
in terms of the inner coordinates R = r/a, Z = (~z + (1)/a, and solved for the inner potential
¥(R,0,Z) = ¢(r,0, z). The vertical coordinate is shifted so that the plane Z = 0 coincides with the
elevation z = (; of the first-order incident wave at the cylinder axis, and Z > 0 is the domain below
this plane. The inner boundary conditions are

and, to leading order,

Ty =—2uu,(a/g)( cos20—i) +(u3/g)[—cos30+( 4 + 2

I R”) cos 0] onZ =0. (6)

The contribution from 1, on the left side of (4) is neglected since it is of higher order. On the right
side of (6) the term —(u? 4 w?), is neglected; this term is associated with the nonlinear correction to
the incident-wave potential, vanishing in regular waves and oscillating with the difference frequency
between spectral components in irregular waves (Newman, 1994).

In the conventional perturbation approach higher-order boundary conditions such as (4) and (6)
would be transferred to the plane z = 0 using a Taylor expansion of the left-hand side; this procedure
is not permissible here since the the potential i varies by O(1) over distances of order a. Instead
it is appropriate to satisfy (6) on the plane Z = 0, which corresponds to the first-order free-surface
elevation in the inner region. The boundary-value problem for ¥ is completed by imposing Laplace’s
equation in the inner domain, and requiring that ¥ tends to zero when (R? + Z?)}/? — co.

The right side of (6) suggests writing the solution in the form

¥(r,2,t) = Z cm(t)¥m (R, Z) cosmb, (7

m=0

where ¢ = ¢; = (2a/g)uu, and ¢; = cs = (u*/g). The functions ¥, and ¥; are evaluated in
FNV using separatlon of variables with Weber transforms of the corresponding terms on the right
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side of (6) which can be evaluated in terms of Lommel functions. ¥, and ¥, can be evaluated in
a similar manner. These solutions have maximum values at the free surface Z = 0, and decrease
monotonically as Z increases. For the analysis of runup we only require the values of each function
on the intersection of the cylinder R = 1 and the plane Z = 0. These have been computed by
numerical integration with the following results:

¥y = ~0.5755, ¥, =0.8004, ¥, =0.8091, ¥;= —0.4925. (8)

3. The free-surface elevation
Next we evaluate the free-surface elevation z = (, defined implicitly by the equation

¢ =-(1/g)(# + 1V9-V9) _,. (9)

This can be expanded in the form
(=G+G+CG+.. (10)

where (, = O(€") in the inner domain. Our intention here is to derive the first three terms on the
right side of (10). For this purpose it is convenient to expand the velocity potential in the modified
form

p=0¢1+ ¢+ s+ ¥... (11),

where the first three terms on the right side of (11) correspond to the terms of the same order in the
linearized potential (2). Except for the contributions from ¥, the right side of (9) can be transferred
to the plane z = 0 in the usual manner, with the following results:

G =—(1/g)¢1:s (12)
(2= —(1/g)(¢2e + b1 C1 + 361, + 343, + 563%,), (13)
Gs = —(1/9)(bae + b2e: Gt + bre: G2 + FPrecs G+ b1: 2.
+ P20 D202 $1 + P2y bay: (1 + D20 P32 + D2y Py
+ 8+ 0., + 0¥, + 03 Ty). (14)

The derivatives of the potentials ¢; are evaluated on z = 0 and the derivatives of ¥ on Z = 0.

More explicit results can be derived in regular waves, where the first- and second-order compo-
nents on the cylinder are

¢, = Asinwt, (15)
(2 = —2K Aacos@coswt — LK A*(L — cos20) — 1K A?(3 + cos 20) cos 2uwt, (16)

The corresonding expression for (3 is too long to reproduce here. It includes terms proportional to
Aa?, A%a, A3, and A*/a, with harmonics up to order four. It may seem paradoxical that the third
component in this sequence is nonzero when a — 0, and the fourth component is singular in this
limit, but the fundamental assumption A/a = O(1) precludes applying these results in that limit.
Similarly, the second-order result (16) differs in the last two terms from the second-order elevation
of the incident wave, despite the fact that these terms are independent of a.

In Figure 1 we compare the second-order runup given by (16) with computations based on
the conventional perturbation expansion using the three dimensional panel code WAMIT with a
truncated cylinder of draft /radius=4. A total of 2096 panels are used on the cylinder and 4144 panels
on the free surface. The conventional approach applies in the diffraction regime, with Ka = O(1);
the runup consists of two components, {, due to quadratic interactions of the linear potential and
¢, due to the second-order potential. In the long-wavelength approximation (, is one order smaller
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that the (;,. The third-order runup (14) is not included here, but since ¥ and (, are solutions of
inhomogeneous free-surface conditions which have some common basis, part of the contribution from
¢, may be recovered in (3.

Figure 1 shows the second-order runup along the circumference of the cylinder for Ka =0.05, 0.1
and 0.15. The upper figures show the sum-frequency (second harmonic) component and the lower
figures show the mean (zero harmonic) component of (16), and the comparison with the computations
of {, and ({; based on the diffraction analysis. In general the long-wavelength approximation agrees
well with {;. The sum-frequency component of {, increases rapidly as Ka increases, and impairs
the long-wavelength approximation of the sum-frequency runup for Ka > 0.1, particularly near
the weather side. Only the real part of the sum-frequency components {, and (, are included for
simplicity; the imaginary components are relatively small, with negligible influence on the modulus.
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Figure 1 — Comparison of the second-order runup based on the long-wavelength approximation (16)
and WAMIT computations. The horizontal axis represents increasing angle from the lee (0.0) to the
weather (1.0) side. The upper (lower) figures are for the sum (difference) frequency components.
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DISCUSSION

Rainey, R. C. T.: I believe the position of my "distorted wavy lid" is equal, to second order
in Stokes expansion, to your "second order wave elevation in the inner domain". Compare
F.N.V. equations (3.12) and (3.13) with equations (2) and (14) in my paper in this workshop.
Do you agree?

Newman, J. N. & Lee, C. H.: Strictly speaking, my reply depends on what is meant by
"second order in Stokes expansion". The result in your (2) appears to correspond to the
second term in our (16) (time average), but not to the third term (second harmonic). And the
more complete "Stokes expansion" for the diffraction regime should include the additional
contribution from the inhomogeneous free-surface condition, of order (K4)a.

Grue, J.: Experimental results' and strongly non-linear simulations 2 show clear depressions
of the surface behind the cylinder on each side of the plane through the cylinder axis in the
direction of the wave propagation, while the surface elevation right behind the cylinder along
this plane shoots up. These features occur right after the wave crest has left the cylinder, and
are pronounced for large amplitude of the incoming wave (a/d~ 0.5, 0.6) (a = wave
amplitude, d = cylinder diameter). Have you obtained such results?

1. Grue, Bjeshol & Strand: Nonlinear wave exciting loads on a vertical circular cylinder.
Pre-print, Univ. of Oslo, 1993.

2. Mehlum: UNDA - simulations of non-linear waves. Report in progress. Oslo 1995.
Newman, J. N. & Lee, C. H.: Our results are restricted to the run up on the cylinder (r=a).

It should be relatively straightforward to evaluate &, for 7>a, but &; would require numerical
solutions for the nonlinear potential ¥ away from the cylinder.
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