COMPUTATION OF THE FINITE DEPTH TIME-DOMAIN GREEN FUNCTION
IN THE LARGE TIME RANGE.

S. Mas , A, Clement

Laboratoire de Mécanique des fluides-Division Hydrodynamique Navale.
CNRS URA 1217, Ecole Centrale de Nantes, FRANCE.

The first formulation of the time-domain Green function seems to appear in Brard in 1948 in the case
of infinite water depth. Finkelstein, in 1957, gave the expressions for finite and infinite water depth
in two and three dimensions. Since that time, a lot of formulations have been developed in order to
evaluate this function in the infinite water depth case (Jami 1982, Newman 1985, Liapis 1986, King
1987). Other methods were proposed to avoid in-line calculations of this function: the tabulation of
the function (Ferrant 1988) and the identification of the function (Clément 1991-1992). Owing of
these studies, the time-domain modelization of the seekeeping problem has become feasible, at least
when the water depth may be considered to be infinite.

On the contrary, in the case of finite water depth, only few formulations of the time-domain Green
function have been developed up to now. Indeed, this function is far more difficult to evaluate
numerically and fewer problems require its use. So, we began the study of this problem three years
ago and the first results we have obtained were presented last year during the ninth Workshop on
Water Waves and Floating Bodies in Kuju. In this paper, the Green function was expressed as odd
powers series of the non dimensional time variable 7. This formulation is only valid for small T
due to the convergence of the coefficients of the series.

In the present paper, alternative formulations of the finite water depth time-domain Green function
are proposed for large values of the time variable. They are based on the method proposed in
Clarisse, Newman, Ursell (1994), which will be referred as CNU method in the following. In these
formulations the parameter R/ T plays a central role, where R is the non dimensional horizontal
distance between the source point and the field point. Two formulations have been developed
depending on the value of the parameter with regard to the maximum group velocity Vg =1 (in the
present linear theory). When R/ T <1, the initial real CNU method has been used. When R/T>1,
a complex CNU method has been developed. '

THE MEMORY PART OF THE GREEN FUNCTION.

We are concerned here with the potential generated in M(X,Y,Z) at time T by a source of unit
impulsive strength 6(0) located at M’(X’,Y’,Z’). This Green function is the sum of a impulsive term

and a memory part given by:
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, R= \[(X -X ’)2 +(Z- Z’)2 being the horizontal distance between the two points. Distances are
nondimensionalized with respect to the constant depth 4.
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The range of integration is extended by introducing the Hankel function of second order H(()z) , and
we use the following integral representation:
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Hence: GM,M',T)= 2__3/_2 J’ dK-T f(K) exp[iT(w B ai2~ a.Kcz)]
Lz

2

do (4)

where a=R/T.
REALCNU METHOD: R/T < 1.

Then we make a double change of variables of integration, in accordance with the CNU method:
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6 (5). By d1ff'erentxatmg the first equation with respect to K, we obtain &
Ko? = uv?

2/3
in terms of the stationary point Ky such as w’(Kp)=a: ¢= 32—(\/K0 tanh Ky - aKp )2/3. Equation

w’(Kg)=a has real solutions when @ < 1. Then this method is only valid in that case. A second
change of variables leads to a polynomial phase function:

u=a(&+mn) . |a=-27V3
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{ Be-m) {ﬁ=—2'5’6a"1’2

Therefore, the Green function can be expressed as
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In terms of the new set of variables (£,n), four saddle points symmetrically located at & =+&g and
n=1&) =tV-ae can be evaluated. Now, by using two Bleistein sequences such as:
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oHg JK

St G =B e+ Bn+ Cogn+ (62 - ) Ha 6 m + (n® - FKaCe )
and after some computations, we show that the first order and the second order of the double integral

in (7) can be evaluated owing to values of G and its partial derivatives with respect to u and to v -
at the saddle points.

(8),
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and the second terms are the leadmg terms, and the third one, a first order correction with respect to
T~1. 4; is the Airy function and 4, its derivative. In (9), their argument is -égTzl 8

Finally, we obtain:G(M,M’,T) =

= [Boa? - 772242, + 277341 4,4, (9), where the first

COMPLEX CNU METHOD: R/T > 1.

From the equation (4), we pass in the complex domain by using two successive changes of variables
and we obtain:
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Then using the same methodology as previously expressed, we make the changes of variables as
follows:

.3
~VEtanK +aK = eu- (met{u=a(§+n)(12)
Ko? = w2 v=pB(£-n)

Equation w(K) = a has real solutions whena > /. Then this method is only valid in that case.
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We now obtain the following system: < G ¢&,m= Kf(lK) e—u’ /2 \," (13)
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with w=vKtanK
Two new Bleistein sequences are defined, and the Green function for R/ T > 1 is derived up to second
order as:
21/3

T2/3‘\/E

The argument of the Airy functions and its derivatives is now EgTZ/‘?.

In the vicinity of the front (a = 1), the Green function was evaluated by expressions (9) and (14) in
order to check the matching at the limit a = 1. The difference between the numerical results never

exceeded 107% in all the cases we have tested.

GIMM'T)= [ EoAiz + éoT—2/3Ai'2 + ZT—4/3A]A1'A{] (14)

NUMERICAL RESULTS.

We give herein the results for three "typical” configurations: R =0, R = 10 and R = 70(Figures 1,
2 & 3). The reference curves were computed by inverse Fourier transforming the related frequency
domain Green function. The difference between our numerical results and the reference is expressed
(Figures a, b & c) as a percentage of the Green function's maximum value over the time interval. This
percentage never exceed 0.38% for the three considered cases. This agreement between the three
methods seems satisfactory for the intended numerical applications.

CONCLUSION.

In this paper, we give two methods in order to evaluate the Green function in the case of finite
depth and large time. By associating these formulations with the series method developed for small
time range (Clément & Mas, 1994), we are now able to evaluate the function whatever the time and
the geometry of the domain. The next step will be the study of the gradient of the Green function in
order to resolve seekeeping problems in case of finite depth, in the time domain.
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DISCUSSION

Doutreleau, Y.: Did you try to use the usual method of steepest descent 1nstead of the CNU
method, (because the former is simpler)?.

Mas, S. & Clément, A.: No, because in our method, we don’t calculate explicitly the double
integral but we simply want to evaluate its asymptotic expansion up to the second order.

Newman, J. N. : I have found that the "second order" correction involving E,, C, and 4; is
required to get accurate results, but that the resulting algorithms are not effective when (say)
R/T < 1/2 or R/T > 3/2. However I am evaluating E,, C,, 4, by a least-squares procedure
which is ad hoc. Have you found a satisfactory set of algorithms to evaluate E,, C, and 4,?

Mas, S. & Clément, A.: The current development of our work is the evaluation of the
gradient of the function. To have the same accuracy as for the Green function, we must
evaluate the second order correction. For that, we evaluate analytically the two coefficients
E, and C, owing to the values of the function G* and its derivatives (up to the fourth
derivative). But we did not evaluate 4; which would correspond, for us, to a third order
correction.
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