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1 Introduction

When a wave meets an immersed body, it is scattered. The scattered field can be calcu-
lated in various well-known ways, such as by an integral-equation method.

If there are several bodies, the field scattered from one body will induce further
scattered fields from all the other bodies, which will induce further scattered fields from
all the other bodies, and so on. This recursive way of thinking about how to calculate the
total field leads to the notion of multiple scattering; it can be used to actually compute
the total scattered field — each step is called an order of scattering. Heaviside [2, p. 323]
gave a clear qualitative description of this process in 1893.

The simplest approximation, called single scattering, is to ignore multiple scattering
completely, so that the total scattered field is just the sum of the fields scattered by the
individual bodies, each of which is acted on by the incident wave in isolation from the
other bodies. This approximation is used widely, but it is only expected to be valid in
certain circumstances. Thus, let a be a length-scale characterising the size of the bodies,
let 27 /K be the wavelength of the incident waves, and let b be a length-scale for the
spacing between the bodies. Then, the single-scattering approximation is only expected
to be appropriate if

a/bk 1 and Kb> 1. (1)

The exact multiple-scattering problern is easily formulated: it is an exterior boundary-
value problem (with a radiation conditiou at infinity) where the boundary is not simply-
connected. Suppose that the boundary has just two components, S; and S;, and set
S = 51U Sz Then, it is straightforward to reduce the boundary-value problem to
a boundary integral equation over S. Computationally, this direct approach can be
expensive, especially for problems involving many three-dimensional obstacles. Thus,
the goal of the various approximate theories of multiple scattering is to solve the multi-
body problem, assuming that we know everything about the scattering of plane waves by
each obstacle in isolation. Wide-spacing approximations yield such a theory: we discuss
them further.

2 Two dimensions

Consider two immersed bodies; a prototype is a pair of half-immersed, fixed, horizontal,
parallel circular cylinders. A regular wavetrain is incident from the left, say, inducing a
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reflected wave and a transmitted wave from the left-hand cylinder; these waves are not
attenuated. In addition, there is a ‘local field’ near the cylinder. This field decays with
distance from the cylinder; in fact, it decays like r=2 along the free surface. So, if the
right-hand cylinder is sufficiently far away, the local field can be ignored, leaving only
the wave transmitted from the left-hand cylinder. This wave will be partly reflected and
partly transmitted by the right-hand cylinder, again with an associated local field. Thus,
we can envisage waves bouncing back and forth along the free surface between the two
cylinders. If we assume that we know the reflection and transmission coefficients for each
cylinder in isolation, and for waves incident from the left and from the right, we can
match the propagating waves so as to derive approximations to the two-body reflection
and transmission coefficients. For a detailed derivation, see Srokosz & Evans [6, §5.3] or
Martin [4].

The description above gives the two-dimensional wide-spacing approzimation. It is
essentially one-dimensional; all that matters are the waves propagating along the free
surface. Note that the notion of ‘orders of scattering’ is not appropriate; in effect, we
have taken account of all orders, with respect to the propagating waves (this is necessary,
because these waves do not attenuate). As a consequence, the wide-spacing approxima-
tion is known to be extremely effective and accurate (even when the conditions (1) are
violated). Indeed, it can be shown that the wide-spacing approximation can be derived
rationally by making appropriate asymptotic approximations in a rigorous exact formu-
lation, namely the null-field/T-matrix formulation [4]. '

3 Three dimensions: overview

Consider two immersed three-dimensional bodies; a prototype is a pair of fixed, half-
immersed spheres. Choose Cartesian coordinates Ozyz with the mean free surface in the
zy-plane, z increasing with depth. Take the incident wave as

-Kz ei]\ (zcosatysina) _ e—]\‘z-l-l]\"rcos (9-—-01), (2)

¢inc =€
where K = w?/g is the wavenumber, a is the angle of incidence and (r, ) are plane polar
coordinates in the zy-plane. Choose an origin O; at (z,y) = ({;,7;) in the vicinity of S;,
and plane polar coordinates (r;,6;) at O;, so that x = §; +r;cosf; and y = n; +r;sinb;,
j=1,2.

Imagine the incident wave encountering the first body, S1; a diagrammatic repre-
sentation of the scattering process is given in Fig. 1 (a similar process is initiated by
the incident wave encountering S;). The incident wave will induce a scattered wave,
spreading out in all directions: it behaves like

r7? e as i — oo, (3)
on the free surface, and so is attenuated. In addition, there is a local field near the body.
This field decays like 772 along the free surface. So, if the second body is sufficiently
far away, the local field can be ignored, leaving only the attenuated scattered wave from
the first body. This wave will be partly scattered to infinity ([1] in Fig. 1) and partly
scattered by the second body, again with an associated local field; this is the second order
of scattering, [2]. When this wave reaches the first body, it will be of order b~! compared
to the incident field; scattering it off the first body gives the third order of scattering, [3]
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Figure 1: Scattering by two widely-spaced bodies in three dimensions. The number v
above any arrow signifies a contribution of size 57, where b is the spacing. Contributions
of O(b~?) are omitted.

We can make one more step, to fourth order [4]; subsequent steps cannot be justified as
they give rise to contributions that are comparable to the neglected local fields.

There is an additional contribution at fourth order. It arises from the next term
in (3); specifically, when ¢, is scattered by S; at 01, in isolation, the scattered field is
given by

eiKrl 1
;czflﬁ{fl(el;awggl(ol;a)} as 11 — 00,

on the free surface, where I; = exp{iK(;cosa + nysina)} is a known phase factor,
and fi (the far-field pattern) and g; are assumed known. The term involving g1 gives
a contribution of order 5=3/2 to the second order of scattering (indicated by the arrows
pointing down in Fig. 1), which is comparable to the leading contribution to the fourth
order of scattering: both contributions are marked by [4] in Fig. 1.

f1 and g; come from solving the single-body problem (in fact, g1 can be expressed in
terms of fy; see (5) below). fi(6;a) gives the far-field amplitude in the direction 6 for
the incident wave (2) when S is located at O. We assume that fi(6; ) is known (or
computable) for any choices of § and a.

4 Three dimensions: calculations

The approach described above has been used by Greenhow [1] for a number of hemi-
spheres. For two hemispheres, he calculated the second order of scattering [z], but was
‘anxious to avoid’ calculating to third order [1, p. 299]! In fact, it is not too difficult to
calculate all the contributions in Fig. 1. The key to making these calculations tractable
was given by Zitron & Karp [7] in their little-cited paper from 1961 on the multiple
scattering of acoustic waves in two dimensions.

Let (&, — €1,m2 — m) = b(cos é,siné). Expand #?. in the neighbourhood of O,, for
large b. Straightforward calculations show that
L~ LK 512 LR (60) + 57 A, Y) ], (4)

8C

AX,)Y) = 3(KY?=X)fi(§e)+Y fi(§;@) + 016 0),
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where X = rjcos (0, — 6), Y = rysin (6, — 6) and f](6;a) = (8/96) f1(6; a) evaluated at
0 = 6; g1 is given exactly by

21K g1(6; @) = 1 f1(6; @) + f1(6; ). (5)

The expression (4) shows that, to leading order in b, the field scattered by S; is approxi-
mately a plane wave at S3, propagating in the direction from O; to O, and with a known
amplitude. Consequently, the scattering of this field by S, can be calculated. Moreover,
its form gives some justification to Simon’s plane-wave approximation [5].

The term involving A(X,Y) in (4) is not a plane wave, but it can be written as a linear
combination of certain derivatives of plane waves with respect to the angle of incidence.
Thus, if

v(¢) = exp{iKr; cos (0; — ¢)},
then v'(§) = iKY €% and v"(6) = iK(1KY? — X)e® X which are precisely the combi-
nations occurring in (4).

5 Discussion

Complicated three-dimensional multiple-scattering problems can be solved exactly; a
powerful method involves using a T-matrix for each obstacle together with an appropriate
addition theorem [4], [3]. Nevertheless, there is a place for wide-spacing approximations
and, moreover, these approximations are simpler to obtain than is generally believed
nowadays. Further work is needed to justify these approximations (asymptotically) and
to compare them with-exact numerical solutions.
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DISCUSSION

Mclver, M. What is the error involved in approximating the cylindrical wave by a plane
wave?

Martin, P. A.: It is given by equation (4) as 0(»*?). Note that the error consists of three
parts (making up A), all of which are computable.

Mclver, M.: In the 2D problem, the waves are not attenuated. However, after the wave has
been scattered several times I would have thought that the amplitude of the wave might be
sufficiently reduced that further scattering could be neglected.

Martin, P. A.: To leading order in b (namely 5°), all orders of scattering contribute.
However, the numerical contribution of each order of scattering does decrease with increasing
order; in this sense you are right. For example, consider two identical bodies, each with a
vertical line of symmetry. Locate one at x = 0 and one at x = b. When a regular wavetrain
from x = - o is incident, the wide-spacing approximation give the reflection coefficient as

R = r{l - (* - £)e"*¥}/A

where r and ¢ are the complex reflection and transmission coefficients, respectively, of each
body in isolation and ‘
A=1-7re

Clearly

<]

Al =E (r 20 2iKb)";

n=0

each term in the series can be interpreted as an order of scattering. Numerically, we get an
approximation to A’ by truncating the series.
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