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The purpose of this note is to show how to eliminate the secular behavior of the e7 order potential in the
solution of wave diffraction-radiation by a body advancing with low forward speed.

We recall first some basic notions and definitions in the frequency domain.

Within the frame of potential theory, the boundary value problem (B.V.P.) of diffraction-radiation with
small forward speed U is described by the Laplace equation in the fluid domain 2, no flow condition on
the fixed boundaries, appropriate radiation conditions for diffracted and radiated parts and the following
condition on the mean free surface (z = 0) :
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where w, = wg — kolU cos 3 is the encounter frequency and wy is the fundamental frequency of incoming
waves. The potential ¢ is the stationary potential due to the interaction of the curent with the body.
The potential ¢ is decomposed into incident, diffracted and radiated parts :
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with the diffracted part satisfying the following free surface and body conditions :
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and the radiated part satisfying :

Odr; . Odri . - . 8
{—w?¢r; + g—gfi + ZZUMe%J— - 210w VodVodr; + Uu%tﬁkjb':gi =0}:=0
3or; WU
{5 r=nit o Mitse

where S, is the body wetted surface.
Diffracted and radiated potentials satisfy also a radiation condition in the form [3] :
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with kq(6) = ko[l + 27%@056 —cos )] and 7 = Uwo/g.
This problem is usually solved by introduction of a new perturbation with respect to 7 either in the
B.V.P. [2,6] or in the expression for the Green function [4,5,7]. In the former case we write :

#(z,y,2) = p(z, 9, 2) + T9¥(z, ¥, 2)
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which is applied to both the diffracted and radiated parts. Unfortunately this perturbation is nonuniform
Le. the solution for the potential ¢ is secular with the following behavior at large  :
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and so valid only in the vicinity of the body.

In order to remove this secularity we make now use of multiple scale analysis [1]. For the sake of simplicity
we consider only the diffraction problem for a vertical cylinder in water of finite depth. By introducing
two new variables v = 77 and § = 77 cos 6, the following perturbation series for ¢p potential is assumed:
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After some manipulations we obtain the following B.V.P. at the corresponding orders :
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with v = 28 — kotanh koH = —Fk, tan k, H.
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The potential ¢p is the standard linear diffraction potential which can be calculated in the classical way.
In the case of vertical circular cylinders it is expressed by eigenfunction expansion. The most general
solution can be written in the form :
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We divide now the p potential into three parts [2] ¥p = ¥1p + Y2p + Yap :
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The potentials ¢2p and ¥ap are non secular and can be calculated by classical methods, see [6] for
example. The secular behavior arises in the solution for 4;p. The general form of the particular solution
for this potential can be written as :
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The constants Cy and C, will be chosen so that the secular behavior of the potential is eliminated. This
leads to the following condition :
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which combined with Sommerfeld radiation condition for ¢q :
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We assume now the function F(v,6) in the form F(v,6) = A(y)B(6). The fact that the potential
¥1p must satisfy Laplace equation in the fluid (in fact, Poisson equation now) results in the following
differential equa.tion :
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which gives :
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So the final solution for ¢p is :
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This solution satisfies all conditions and is now free of secularity.
In the case of infinite water depth we can perform the same analysis to obtain :
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with op = ezirﬂ/(cono—colﬂ)‘p.
Some authors [4,5] define the parameter 7 as a function of encounter frequency 7 = Uw,/g, and the

present analysis, with some minor modifications, can be applied also to this case. The final solution for
¥1p is then :
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but now :
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The two solutions are equivalent, but the first one is easier to implement in the case of bottom mounted
vertical cylinder due to the fact that a simple analytic solution for ¢p can be obtained without including
evanescent wave modes.
For the general case of a body of arbitrary shape similar analysis can be applied. For infinite water depth
the solution presented here is directly valid but for finite depth it should be slightly modified. In fact,
the particular solution for 4, changes [2] but, since the nature of secularity is the same, the derivation of
the equations is straightforward.
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