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1.LFORMULATION OF THE PROBLEM
The problem to be considered here is that an assemble of cylinders is floating in a water of
depth h. The radius of each cylinder is a and the draught is d. In addition to a uniform current of

velocity U, there comes a plane wave with a frequency of ay and an incident angle of 8.The body is

restrained from the drift motions but is free to linear oscillation at encountering frequency @ which is
defined as w= @, + Uk, cos B with k; as the wave number of the incident wave.As an extension of
the previous work (Bao & Kinoshita 1993) in which only the diffraction problem was considered, the
radiation problem will be included in the present work. A right-handed coordinate system is adopted.
The plane z=0 coincides with the still water free surface and z-axis is positive upwards. The x-axis
points along with the uniform flow so that the current is moving in the positive x direction. The

viscous effect is neglected and the flow is assumed to be irrotational. There exists a velocity potential
@ which is decomposed into a uniform flow Uk, a steady disturbance potential ¢ and an unsteady

potential. The unsteady potential is in turn separated into radiation potentials ¢j (=1-6)of six

. motion.modes and a scattering potential ¢, i. e.

D, 1) = Ux+Ud(x)+Re {l:- zwz Eipi(x) + §9§-¢s(x):| e- o } (1-1)

j=1
The scattering potential ¢, includes an incident wave potential ¢, and a diffraction potential ¢,.Then

each mode of the unsteady potentials is expanded into power series of T=wU/g,.i €.
¢ = ¢\ + 1¢{1) + O(72) G=1-7) (1-2)

The zeroth order potential satisfies a boundary problem same as the linear wave problem without
current. The current effect enters in the first order problem whose free surface condition is no longer
homogeneous and the boundary condition satisfied by the radiation potentials on the body surface
involves the second order derivatives of the steady potential. Detail discussion is referred to our
previous work(Bao & Kinoshita 1994).

2. SOLUTION TO THE INTERACTION PROBLEM

The interaction among cylinders is treated as some additional waves emitting from the adjacent
cylinders towards the cylinder under consideration. The zeroth order problem is solved by a way
similar to Kagemoto & Yue's(1986) which can also be extended to solve the first order problem.

To solve the first order problem, a particular solution which satisfies the inhomogeneous free
surface condition is firstly sought. This can be done with a derivative operator or with a Green
function suitable for the problem of pressure distribution over the free surface(see Wehausen &
LaitonE, 1960). Then a general solution which takes account of the interaction among cylinders is
added. The general solution can be solved in a similar way as in the zeroth order problem if the
particular solution is regarded as a kind of incident waves. The detail discussion is referred to our
previous work(Bao & Kinoshita, 1993).
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3. HYDRODYNAMIC FORCES

Once the potentials are solved, the hydrodynamic forces can be evaluated by integrating the
hydrodynamic pressure over the wetted surface of the bodies. Alternatively, by using the Green
theorem, the hydrodynamic force can be calculated without solving the first order problem, i.e.

. 0 .
Fi= pio ¢j( )nids + szco[}l; f (-¢,-(0)mj -W. V¢j(0)n,-) ds
So S0

HI [ 6OW-926(- 9OW-V29®] ds | +0(2) 3-1)
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where m ; has the same definition as done by Newman(1979). By the Tuck theorem(Ogilvie & Tuck
1969), the integral involving m 5 which contains the second order derivatives of the steady potential,
can be evaluated by the integral of W-V¢©. Thus the hydrodynamic force may be written as

Fi= piw[ 0 Onids + rpiw[;l‘—, I (W voOn- . v9On) ds
S0 S0

+i f [ 6OW-V,00- 9OW.V,9] ds ] +0(72) (3-2)
SF

The first term is the same as the result without current except that the frequency is shifted to the
encountering frequency. The second term accounts for the the current effect which consists of the
contribution from the first order potential and the interaction of the steady potential with the zeroth
order potential.

The wave drifting force is calculated by integrating the second order terms in hydrodynamic
pressure over the wetted body surface.The wave drifting force can also be expanded into a power
series of 7, 1. e. Fy = E‘CO) + rF}l ) The first term 17“}0) is the wave drift force without current and is the

same as usual. The second term f,(cl ) takes account of the the current effects, which is given by:
I?)(cl)zRe{ ,p_f [V(/,(O).V(p(l)* - iwo(V¢(” .(5(0)*_*. @(0)*xx)
2
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where the amplitudes of oscillation have also been expanded into power series of 7, i.e. éfé}‘”#t }”

The total zeroth order potential ¢(°) and relative wave elevation Q‘é’ ) are defined as usual while the first
order ones are given by

6
o= ia S ( EDgO £OD) +k0;c‘(/)§_ﬂ_éj(0)¢1(0)) . f_z% o (3-3b)
. o |
4= "fg""{fp‘ 0,008 Byo). Lw v (04 £y - 0y (3-30)

4. EVALUATION OF FREE-SURFACE INTEGRAL
To evaluate hydrodynamic forces or to obtain the particular solution for the first order
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potential, it involves integrals over the free surface which extends to infinity. Some of these integrals
are critical in convergence. Therefore, it should be cautious to carry out these integrals. The integral
takes a form like

V%3 oo
1=f def [ §O)W 'V2¢J(‘0)' gO)W -V2¢§O)] rdr 4-1)
0 a

The integral with respect to 6 can be done easily. We will concentrate our discussion on the integral

with respect to 7. The integrand is a product of three potentials or their derivatives which are expanded
into eigenfunction series. Multiplying terms by terms, the integrand is sorted into two groups. A close
inspection shows that the first term in the expansion for unsteady potential ¢}°) and ¢}°) is a Hankel or

Bessel function, while it is a power function of r or 1/r for the steady potential represented by W. The
product of these terms can be integrated analytically by means of the integral formulae of Bessel
functions. Two typical integrals are shown here

Z (ko) Bo(kont S = 2 0T Z (koD BpealKon)-Za(kon) B a(kon)] (4-2a)
j [Z(kor) Br(kor)+ Zn1(kor) B 1 (ko) rdr

2.2 :
- k02r [ Z,(koD) B py1(koD)-Z o ko) Bpe1 (ko) +Z ns1(kor) B(kon)-Zns1(kor) B'(kon)]  (4-20)

where Z and B represent one kind of Bessel(Hankel) function and the prime indicates its derivative

~ with respect to the argument. The remaining terms of these potentials are all the modified Bessel

functions of second kind which decay exponentially as the argument tends to infinity. The product of
these terms can be integrated accurately by numerical method.

5. THE CORNER EFFECTS

In this section we are going to discuss the singularity around the bottom corner of the cylinder.
To make it easier to understand, let us first examine the evaluation of the force without solving the first
order potential. Difficulty arises from the integral of m; term in equation (3-1), 1. e.

1=l 6Omas (5-1)
S0

where m; is the second order derivative of the steady potential. Since m; is singular at the bottom

corner of the cylinder, this integral does not converge. It needs interpretation. It should also be noted
that the Tuck theorem can not be applied directly to the integral due to the discontinuity of m; at the
corner. However, it is reasonable to assume that the hydrodynamic forces remain finite despite the
singularity of the potential.

Physically, the singular behavior of the potential generates a concentrate pressure at the corner.
When the hydrodynamic forces are calculated, an additional term should be inserted into equation (3-
1) to take this concentrate pressure into account. Therefore the value of / should be replaced by

Iy=- gO)mj ds +P (5-2)
S0
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where P represents the contribution from the concentrate pressure.
To determine the value of P, the Tuck theorem is applied to the bottom surface S, and the s1de
wall S, of the cylinder separately.

W -VeOnds =- f Omds + f oW Gmxg), (5-3a)
JSb Sb Cy

r w. V¢(0)n, s =- r
s, Js,

where C,, is the corner line, i. . the intersection of S, and S,,. The superscription 'in' (or 'out’) indicates
that the value of inner (or outer) region is taken.
It is noted that the sum of S, and S,,, gives the body surface S;. By summing two sides of

these two equations respectively and comparing with (5-2) it can be found that the contribution of the
concentrate pressure is given by two line integrals

O ds - f i w (ounqy); (5-3b)
Cob

P=| ¢Owinkdr) | 0w luxai), (5-4)
Cp Cw
For smooth body surface, steady velocity is continuous over any line on the body surface. Hence,
these two line integrals are equal and cancel with each other. However, for a body with sharp corner

like a truncated cylinder, due to the discontinuity of the steady velocity W over the corner, these two
line integrals are generally not equal and can not be canceled with each other.

Replacing the integral of m ; term in (3-1) by the value of / in (5-2), it can be found that
equation (3-2) still holds and Timman-Newman reciprocal relation is satisfied.

When the first order radiation problems are solved, the same difficulty arises at the corner of
the cylinder. Since it also involves surface integrals of m;terms, the same treatment discussed above

can be applied in solving these problems.

6. EXPERIMENT

Experiments with an assembly of four cylinders were carried out in a towing tank. Oscillating
motions as well as wave drifting force are measured. Calculated results are in good agreement with the
experimental ones, which confirms the validation of the present approach.
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