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Water shipping on deck and the resulting water sloshing inside the deck well is dangerous to small
vessels with a large open deck area. In case where a large amount of water is trapped in the deck
well, the vessel’s transverse stability is dramatically reduced and can lead to capsize. T"Ae present
research is to study the nonlinear shallow water flow on a three-dimensional deck due to ship motions
in six degrees of freedom. Related work has been conducted experimentally and numenca.lliy by Adee
and Caglayan (1982) and again numerically by Pantazopoulos (1988) using the Random Choice method.
The Random Choice method uses a random sampling technique, so that a phase error can be introduced
to the hydraulic jump in the shallow water flow. It requires that the Courant number should be less
than unity in order to keep the numerical scheme stable. However, if the Courant number is very small,
the numerical scheme could give unstable solutions (Adee and Caglayan, 1982). The Flux Difference
method was applied to compute the water flow on a 2-D deck (Huang and Hsiung, 1994). This method
was developed based on the Flux-Vector Splitting method orginally given by Steger and Warming (1981)
to compute shock waves in gas dynamics. Alcrudo et al. (1992) used this method to compute open
channel flows. It is able to capture discontinuities (such as hydraulic jumps in open channel flow and
deck flow) in the solutions. The present work is the extension of the authors’ previous study on water
flow on a 2-D deck.

A ship-fixed coordinate system ozyz is used with coordinates attached on the deck bottom plane of
rectangular shape, and the origin is at the centre of the bottom. The oz axis is vertical upward.
The ship’s rotational motions are represented by Euler’s angles (ey, ez, e3) of the ship in space. The
instantaneous translational velocities of ship motion along the oz—, oy— and oz—directions are u;,
uy and ug, and the rotational velocities about axes parallel to oz, oy and oz and passing through
the centre of gravity are u4, us and ug, respectively. The velocity of the water particle is denoted
by ¥ = (u,v,w). The fluid motion is governed by the continuity equation and Euler’s lequations,
subjected to the boundary conditions: w = 3% + u-gc- + v-5£ and p = 0 on the free surface z = {; and
7.7 = 0 on the deck’s bottom and sides. Initially, the Shlp is assumed to be at the upright position
and the fluid is motionless. If the water depth is sufficiently shallow compared with the horizontal
dimension of the deck space, we can assume that (i) the deck bottom is flat and the sides of deck is
perpendicular to the bottom; (ii) w is a small quantity compared with u and v; and (iii) v = u(z,y, t)
and v = v(z, y,t). Then, the governing equations can be written as: ;
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where
o = —gsin(ez) — i1 + 2uev + (uf + ud) (¢ — ;) + (tie ~ vaus) (¥ — Yg) + (uaue — 5)zy (4)
g2 = —gcos(er)cos(ez) — Uz — 2(ugv — usu) — (vaueis)(z — 4) — (usus — ta) (y — yp) — (u3 + ud)z, (5)
ro = —gsin(ey)sin(es) — iz — 2ugu — (usts + Ug) (¢ — y) + (v + vd) (¥ — o) + (usus — w4)z, (6)
¢ = —uqug, s = ud + ul, r = —usls, rs=¢q; and r3=gqs )

and (24, Yy, 2,) is the centre of gravity of the ship.

Let ¢ = g(, the governing equation is expressed in terms of the flux vector as follows:
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with Dgy = 1+ g2/9 + 9q3/9%, E33s = 1 +r2/g + qra/¢?, fo2 = ago + ¢*q1/g, and gos = qro + ¢*r1/g.

In numerical computation, the deck space is devided with m X n nodes and the governing equation is
split into two equations:
0W BF BW
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At each time step, instead of solving the 2—D govermng equation for m X n nodes, we solve m + n
1-D equations along the x- and y- directions separately using the Fractional Step Method (Marchuk,
1982) Equatlons are first solved along the x-direction; and it is assumed that W(m, Yirstn) = W" and
F( T,Yjytn) = F“ are constants for z € [z; — Az, z; + 1Az] and y = y; for j = 1,2,-- ,n w,v and
g, are found, and W (z,y,t) and (:( ,¥,t) can be calculated at nodal points usmg u, v and ¢ Then
we solve the equations along the y-dlrectmn by assuming that W (z;,y,t) = and G(zi,y,t) =

are constants for y € [y; — Ay,y‘7 + Ay] and z = z; for ¢ = 1,2,-+-,m. Slmlla.r to the work glven
by Huang and Hsiung (1994) for the 2—D deck space, the finite difference equations can be derived as
follows:

VW,-:W - BAFY 1t AA +;_J, for j=1,2,:-+,n (13)
14/'7:1-{-1 _— . .—-ﬁzAG*] .L+ﬂ2AGtJ+l’ for 1= 1,2,...,m (14)
where 8 = 2% and ff; = KE The Flux-Difference Splitting method together with the Superbee limiter

are applied to AF and AG to obtain a stable finite difference scheme. The expressions for the flux
difference are too lengthy to be included in this abstract. Details will be presented at the Workshop.
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The source code has been developed, and was validated against the published experimen a,l data by
Adee and Caglayan (1982) and the exact solution of bore propagation by Stoker (1948). Effect of the
Superbee limiter was also investigated. It was applied to the wave motion resulting from the impulse
boundary movement in the shallow water. A single wave was developed and propagated in the direction
of the boundary movement. The single wave has all the properties of a soliton in the Boussi esq theory
except that as the wave form propagates, its front becomes steep and its tail relatively flat. This is
because the nonlinearity instead of the d1spers1ve effect is dominant in the governing equatx ns.

The shallow water flow in a deck well of 1.0 m. by 1.0 m. is calculated for the mean water depth
0.06 m. The deck flow is excited by roll motion. The numerical results shows that the water surface
is a “solid” horizontal surface at a rolling frequency much less than the primary resonant frequency
As the roll frequency is close to the first resonant frequency, a single bore appears. Between the first
and second resonant frequencies, the water surface is like a solid surface parallel to the de{:k bottom.
When the rolling frequency is close to the second resonant frequency, standing waves are formed with
the wave length equal to the deck width. As the rolling amplitude increases, the wave arhphtude is
increased and small short waves appears on top of standing waves. If the rolling frequency is further
increased to about the third resonant frequency, a big solitary wave travels back and forth in the deck
well. We also calculated the water flow on deck caused by a slow amplitude-modulated rd:xll motion:
e1 = a1 (14-azsin(Q))sin(wt), where Q is the modulation frequency and a; is the modulation ratio. It is
interesting to note that at the rolling frequency w near the second resonant frequency, Q/w -—'0 2,a; =3
deg. and ay = 1.2, the time history of the wave elevation shows a motion of the period 2/%, see Fig. 1.
However, if Q/w is slightly increased to 0.204 and a; = 4 deg., the wave motion is no longer ‘penodma.l
as shown in Fig. 2. Whether this is due to the flow instability is still under investigation.

The computation is also carried out for the mean water depth 0.1 m. The deck is forced to bscillate in
roll and pitch motions with both amplitudes 5 deg. Fig. 3 shows the wave profile at ¢ = 3.0 sec. and
frequency 7.0 rad/sec. The wave profile is shown in Fig. 3 and the velocity distribution is in Fig. 4 at
t = 3.0 sec. When the frequency w = 4.0 rad/sec. is near the primary resonant frequency of the deck
flow, two perpendicular bores appear in the deck space and there also exists a oblique bore caused by
the interaction of the two perpendicular bores (Fig. 5). The bore in the greater water deﬂ)th travels
faster than that in the smaller water depth. Deck flow under the heave excitation is given in Fig. 6 at
t = 2.5 sec., where the excitation frequency equals the second resonant frequency of the deck flow. At
the beginning of computation, small disturbances in the x- and y-directions are applied simultaneously
to the deck. The disturbance has the amplitude of 0.005 m. and only lasts for 0.05 sec. The surface
wave caused by the disturbance does not decay and moves in the x-direction. In the y-direction, the
wave profile looks like a solid surface oscillating about the x-axis. In other frequencies, the wave profile
is always as a solid horizontal plane even though a disturbance is applied.
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DISCUSSION

Korobkin, A. : The present method can be applied after simple modifications to the problem
of liquid drop impact onto a rigid plate (plane case). The latter problem was the subje;ct of
many numerical studies. But common numerical schemes have a great artificial viscosity.
That is why the comparison of the present approach with results from the drop impact
problem can be helpful to understand more clearly the peculiarities of the method suggf:sted
by the authors.

Huang, Z. J. & Hsiung, C. C.: Thank you for your interesting and useful comments:L

Yeung, R. W.: The governing equations that you are solving are non-dissipative and an
energy conservation theorem can be derived. Did you apply an energy check to your
solution? If not, I would think this would be a worthwhile effort. =

Huang, Z. J. & Hsiung, C. C.: We did not apply an energy check to the solution.
However, in order to avoid unphysical stationary jumps (those in which energy increases
across the jump) a flux limiting function, the Superbee limiter, is introduced in our
computational scheme. The Superbee limiter is also able to eliminate oscillations within the
solutions, and thus reduces smearing of the computed bore.

King, A. C.: How do you advance the surface height in time on the boundary of the don}xain‘?

Huang, Z. J. & Hsiung, C. C.: This is a time-domain solution with 500 time-steps. | ' The
water surface is discretized with a grid of 50 x 40 elements. The initial conditions are: 1[) the
ship is at the upright position; and 2) the water is calm. With a prescnbed ship motion as the
external excitation, at each time-step, the free surface configuration is computed, 1nch|1d1ng
the intersection with the boundary (deck wall) as well as the wave elevation.
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