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INTRODUCTION

A numerical method is proposed here to solve the problem of forced sinusoidal heaving motion of a free
surface plercmg cylinder in viscous and incompressible fluid.

The flow is supposed unsteady and laminar. Two dimensional Navier-Stokes equations are discretised
by a finite-difference method. Free surface elevation and coupled velocity-pressure system are
computed independently. The original aspects of this method are both consideration of the free surface
boundary conditions and regridding of the moving physical domain at each iteration.

Hydrodynamic forces and coefficients are calculated and compared with experimental results.’

The interest of this simulation in viscous fluid is the numerical calculation of viscous eﬁ'ectsl which at
this time can only be obtained by experiments or empirical formulas.

EQUATIONS

Navier-Stokes equations are written using an orthogonal system (x!,x%). The origin of the 'system is
chosen on the undisturbed free surface and x? is upward positive oriented. Independant unknowns are
the cartesian components (u!l,u2?) of the total veloclty and total pressure P. Gravity t*orces are
introduced using the change of variable p= P+ pgx?. v is the kinematic viscosity

The physmal domain is transformed into calculation domain using a system of curvilinear coordinates
(e',€%). In this computational domain free surface and other boundaries are described by coordinate
lines. With this method the computational domain is a rectangular box which remains unmodified
during the simulation whereas the physxcal domain evolves.

The partial transformation consxsts in using the Cartesian components of velocity and! pressure
according to the curvilinear system (¢, e?). Navier-Stokes equations thus become :
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Free surface boundary conditions consist of one kinematic condition on the free surface elevation & and
two dynamic conditions expressing the continuity of normal and tangential stresses on the free
surface [1]. The implicit discrete form of kinematic equation is used to calculate free surface elevation
at each time step. The two dynamic conditions allow to obtain full linear systems (3).

DISCRETISATION AND NUMERICAL SOLUTION

The structured monoblock mesh (fig. 1) is computed using a transfinite interpolation method [3].
Transport equation (1) is first linearized. Discretisation is achieved using a multiexponential scheme
based on a decomposition of the transport equation according to each curvilinear direction. A collocated
node-centered disposition is retained for the independant unknowns of the problem. The continuity
equation and pressure gradient are finally discretized using classical first order non-centered
schemes [1]. These discretisations lead to the two linear systems hereunder :

(E-AU+GP=f , DU=g )

Vectors U and P respectively depict velocity and pressure components for each node.

Matrices E and A are issued from equation (1), G and D are the discrete forms of grad!:ent and

divergence operators. Direct resolution is impossible because of storing problems for solving full linear
systems. So we use the SIMPLER iterative algorithm [7]. In SIMPLER the matrices are inverted by a

ILU preconditionned bi-CGSTAB method [9].
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RESULTS

The sinusoidal forced-heaving motion of the free surface piercing body is defined by its amplitude 4 and
its frequency .

Nondimensional hydrodynamic forces are first calculated for a heaving circular cylinder of radius r
Computations are performed for two motion amplitudes (A=0.2r and 0.4r) and several frequencies'
Added mass (fig. 2), damping coefficient (fig. 3), 2nd-harmonic (fig. 4) and 3rd-harmonic (fig. 5) forcé
amplitudes are obtained by a Fourier analysis of the only pressure forces. Results are in quite good
agreement with experimental results [8] [10] and numerical calculations obtained with potential-flow
theory [6]. Particularly the added masses increase with the motion amplitude and the damping
coefficients evolve with a reverse trend which is confirmed by experimental results. Moreover values of
the damping coefficients at low frequencies are over-estimated by our calculation. This is probably due
to viscous effects which are not taken into account and which can become significant at low
frequencies [13]). Bad calculations for A=0.4r and great frequencies are due to not enough refined
meshes (fig. 4 and 5).

For the computations above-mentioned the first-order amplitude of waves generated by the cylinder is
calculated with Fourier analysis of the displacement of progressive waves. Computations for two
amplitudes (fig. 6) are in good agreement with experimental results [5] [8].

Free surface profiles in the vicinity of the circular heaving cylinder (fig. 7) are compared with results
obtained by a fully-nonlinear potential-flow model [4]. The amplitude motion is here A=0.4r,
nondimensional wave number Kr = w®r/ g is 2.0. :

In order to compute viscous forces, meshes with an important refinement in the vicinity of the body are
necessary to take into account boundary layer effects accurately. This leads to an increase of calculation
time (18 CPU hours on a 40 Mflops computer to simulate 20 seconds of heave). Moreover, there are
important numerical problems at the intersection between body and free surface. We use here a body
with sharp edges for which viscous effects are more important.

For a cylinder having a rectangular section (4/B=0.30, B/d=1.0, ®*B/2g=2.0 where B is beam and d
the draft) velocity-vector and vorticity-contour plots at ¢=3.18T (T is the period of the vertical motion)
are compared with the calculation of Yeung & al. in viscous fluid [11] (fig. 8). Structure of the flows is
quite similar. A small asymmetry in the vorticity-contour plot can be seen for Yeung & al. calculation
(fig. 8 (b)). Moreover differences on free surface profiles exist. 4
For another case (wB?/ v=1000, w?B/2g=2.0, A/B=0.30, d/B=1.0) viscous forces are calculated (fig.
9). The shear-stress contribution is about 7 % and the normal viscous stress is about 1 % of the
pressure force. These results are in quite good agreement with those of Yeung & al. [12].

Numerical problems encountered for meshes with important refinement arise from the mathematical
singularity of the kinematic condition at the junction between body and free surface. At this contact
point, no-slip and kinematic conditions are both available. The existence of a meniscus solves this
singularity. This is confirmed numerically but leads to the breakdown of the calculation. These
problems are solved by a limitation of the slope of this meniscus on the body. Convergence is still
problematical. The only real solution seems to be direct calculation of the total coupled system in
velocity-pressure-free surface elevation [2]. This method will permit to use exactly free surface
boundary conditions and to solve the problem of incident waves on an oscillating surface piercing body.
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Meshing evolution during numerical simulation.
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Fig. 6 : Amplitude of first order wave-circular cylinder for A/r=0.2 (a) and A/r=0.4 (b).
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Fig. 7 : Free-surface profiles generated by a heaving circular cylinder.
Body displacement : y. = Acos(ax), A=0.4r, Kr=0?r/ g=2.0.
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Fig. 8 : Velocity-vector and vorticity-contour plots at #=3.187'
Method presented here (c & d), Yeung & Ananthakrishnan calculations (a &D).
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DISCUSSION

Yeung, R. W. & Ananthakrishnan, P. : This work is nicely put together. We are pleased
that the authors’ results such as viscous stress and pressure forces for the heaving rectangle
are in agreement with our published results. We believe, however, that the method you used
has been unsuccessful in capturing the vorticity structure generated along the sides of the
body. 'The vorticity patterns shown by us are due to the interaction of the side and bottom
boundary layers with the shed vortex that was generated during the upward stroke of the
earlier cycle. Perhaps the authors can comment on that. Further, it appears your wave-
elevation computations display little curvature. This does not seem reasonable for a motion
amplitude to body draft ratio of 30%. There may have been difficulties in your
implementation of the free-surface conditions. Perhaps some additional verification of the
code is appropriate.

Gentaz, L., Alessandrini, B. & Delhommeau, G. : Concerning the little curvature of free
surface elevations an error has been found in the implementation of the re-gridding of the
physical domain. Additional computations show more important free surface elevations which
seem to be comparable with Yeung’s plots. Moreover these free surface elevations ate in
good agreement with others” computations in perfect flow given by the computer code in
perfect flow of Mr. Clément (references given in the article of Clément and Domgin in this
workshop). In our computations, vorticity structures are really generated along the sides of
the heaving body. The exact process of vorticity formation has not yet been studied, but
interactions between side and bottom boundary layers and shed vortices explained by Yeung
should be found again.

Raven, H. C. : You report that the over-estimation of the damping coefficients at low
frequencies may be due to viscous effects that are not taken into account. Do you mean that
the resolution was insufficient on your coarser grid? If so, on a coarse grid it may be better
to neglect the boundary layer altogether (by imposing a free-slip hull b.c.) rather than
imposing a no-slip b.c.; the latter may cause an unphysical "boundary layer" that is too thick
and pollutes your results.

Gentaz, L., Alessandrini, B. & Delhommeau, G. : With coarse grids, the boundary layer
is not taken into account with accuracy. So the viscous part of the forces which are acting
on the body can not be computed. However, effects of viscosity in the flow can be noted.
A free-slip condition on the heaving body would probably be used for coarse grids, but these
computations on coarse grids have been made only to show the ability of the method to
calculate hydrodynamic coefficients in good agreement with experimental results (except for
particular cases like low frequencies). Our purpose is to make computations with enough
refined meshes to simulate correctly boundary layer effects and then to estimate the mﬂuence
of the viscosity on the hydrodynamic coefficients.
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