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Abstract

In this paper we present a direct method for calculating the hydrodynamic loads (forces and
moments) acting on a rigid cylinder (of arbitrary cross-section) moving unsteadily in a direction
perpendicular to its main axis and rotating about the same axis in a non-uniform ambient
potential flow field V(x,t) = V¢. The corresponding expressions for the force and moment are
given in a moving (body-fixed) coordinate system and the derivation is based on the general
methodology recently developed by Galper & Miloh (1995). The presence of a free-surface is
indirectly accounted for through a self-consistent correction for the ambient stream V (see, for
example, Faltinsen et al. 1995). It is further implied that the axis of the cylinder coincides with
the z-axis of the corresponding cylindrical coordinate system.

We consider firstly the particular example of an infinitely long (in the z-direction) cylinder,
the diameter d of which is much smaller than the length scale L of the z-non-uniformity of the
ambient flow field. No restrictions are imposed on the flow non-uniformity in the (z,y) plane.
In this case, up to the zero-order of the small parameter ¢ = % < 1, the problem is globally a
2-dimensional one. Nevertheless, locally the problem preserves its 3-D nature, which manifests
itself in the fact that the local force acting on any particular cross-section is given by the sum of
a purely 2-D force (per unit length) plus an additional force per unit length F* proportional to

the fluid acceleration in the z-direction, i.e.,

Fo = .;. /S (V2)(r, 7) n; dS, (1)

where V = (V,,V,,V;) = (W1, V2, V3) and S(r) = 0 is the equation of a cross-section. Assuming
that the ends of the cylinder are in a fluid at rest, the force per unit length is determined up to
a full z-derivative (which clearly vanishes after the z-integration). The last term in the RHS of

(1) can be written after subtracting the full z-derivative as,
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from where one concludes that in order to reduce the problem to a pure 2-D forces, the form of

the strain tensor should be degenerated, i.e.
E33 = 0, or E3z‘ = 0, $ = 1,2, (3)

where E;; = V,;Vj.

The derived expressions, when applied for the particular case of a weakly non-uniform flow
field (in the transverse plane) coincide, with the common expressions for a force per unit length
F acting on a moving cylinder with a velocity U in z,y-plane (see, for example, Rainey 1995,

Dowling 1994, Manners & Rainey 1992 and Madsen 1986)
it & ~ .DV LI A A
F=(sl+ m)ﬁ- + (EM - ME)(V - U), (4)

where s is the area of the cylindrical cross-section, M is the 3-D translational added-mass tensor
and 7 is the 2-D added-mass tensor of the cross-section. Note that for a circular cylinder this
force can be expressed in a potential form.

We consider further the next-order terms in the theory of perturbations, namely those of
O(€?). The corresponding expressions suggest now the existence of long-distance coupling between

different cross-sections. Let us write the 2— D shape S in a complex plane as a Fourier expansion
C=re¥ 4+ Z cnexp(—ine), (%)
n=1
where 7* is a “conformal radius” given by
4nr*? = Tr(i) + 2s, (6)

and Tr(rh) denotes the trace of the added-mass matrix 7. Note that with the help of the
corresponding rotation of the plane, one can always choose the coordinate system in such a way
that Im(c;) = 0 (in this coordinate system the 2 — D added-mass tensor 7 is diagonalized). The
force per unit length, acting on a non-circular cross-section embedded in a weakly non-uniform
flow field, is given up to O(e?) by

L 02E(2)

- . - ~ a 1 V(2
F = (sl )20+ (BY = ME)V + 5524220 (%)

- a5 (7)
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where we introduce a diagonal matrix

A= ¢ +001) (1 -OCI)Z ’ (8)

and denote s* = wr*2, For a circular cylinder ¢; = 0, T'r(7h) = 2s = 17d? and hence 2r* = d.
This coupling kernel is essentially different from the corresponding coupling one in the slender-
body theory (see for example Tuck 1990) but has the same asymptotic behavior for the case of
a small cross-section, i.e., d — 0.
An additional force due to the rotation of the cylinder, which couples the strain tensor and
the angular velocity, is also obtained. This term, which is of order €2, vanishes for a symmetrical

cross-section.
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DISCUSSION

Newman, J. N.: I think the "non-local" force in your transparencies is not unexpected, and
is essentially the same as one gets from a higher order slender body analysis. This
component is essentially the force due to the (3D) dipoles coming from the outer solution.
I believe it is discussed in the paper by E. O. Tuck at the Ursell Symposium (Manchester
1990).

Galper, A., & Miloh, T.: The same non-local term also appears in the theory of 3D vortex
stretching of thin filaments with finite core, recently developed by Klein and Majda. The
phrase "unexpected" has been loosely used in this context. This non-local coupling term is
similar to a corresponding correction term arising in higher-order slender body theory
(discussed by Tuck), however it is not the same. In slender body theory the non-local term
can be obtained by a Fourier inversion of Ky(kr), whereas in the present non-uniform flow
analysis it is given by the inverse Fourier transform of K,(kr)/krK,'(kr). For small kr both
terms are asymptotically equal to O((kr)*log(kr)).

Rainey, R. C. T. : As at the 1990 workshop (see 1990 workshop discussion) I greatly value
this opportunity to compare my results with Prof. Miloh’s. 1believe he agrees with my latest,
comprehensive result (1), and effectively extends it by including terms proportional to
cylinder (cross-section)’. The long-distance coupling in these higher order terms, highlighted
by Prof. Miloh, is interesting, and perhaps expected given the well-known interaction effect
between a group of vertical cylinders; which is also of order (cross-section)?.

(1)  Rainey R. C. T. (1995) Slender-body Expressions for the Wave Load on Offshore
Structures. Proc. R. Soc. In press.

Galper, A., & Miloh, T.: The term representing interaction-effects between a group of
vertical cylinders in Rainey’s formulation is indeed a higher-order term proportional to r* (r is
the radius of the cylinder); however, it is still a local term unlike the non-local terms reported
here for a single cylinder.
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