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NONLINEAR WAVE LOADS AND RUNUP UPON
A SURFACE PIERCING CYLINDER

Pierre Ferrant
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Immeuble Atlanpole ~ 1 rue de la Noé ~ 44071 NANTES CEDEX 03 - FRANCE

A numerical solution method for the diffraction of nonlinear regular waves of permanent
form by three dimensional bodies is proposed. The computation is based on a boundary integral
equation method, with a mixed Euler-Lagrange approach for the time stepping. The method is an
extension of a previously developed linear time domain computational model for free surface
flows (Ferrant 1993). The behaviour of the nonlinear model was first tested on radiation and
diffraction problems for submerged bodies, using a fully Lagrangian formulation for the free
surface motion (Ferrant 1994). In the present paper, we report on the extension of the model to
surface piercing bodies. While the solution of nonlinear diffraction problems on submerged
bodies was based on a fully Lagrangian form of the free surface conditions (Ferrant 1994), the
present model is based on a modified formulation in which free surface mesh points are fixed in
their horizontal motion. This change was motivated by the resulting easier treatment of the free
surface body intersection line as well as by the more straightforward implementation of
interpolation and smoothing techniques. Numerical results are presented on the case of a bottom
mounted vertical cylinder submitted to a nonlinear incident wave.

SOLUTION PROCEDURE

The core of the numerical model is composed of a boundary integral equation method
coupled with a time marching scheme. :

A boundary element method is used for the solution of the boundary integral equation
formulation of the problem. The method is based on isoparametric triangular elements distributed
over the different boundaries. A piecewise linear, continuous variation of the solution over the
boundary is thus assumed, and collocation points are placed at panel vertices. At the intersection
between solid boundaries and the free surface, both Neumann and Dirichlet conditions are
specified, by keeping two collocation points at the same geometrical location. This discretization
scheme reduces the integral equation to a linear algebraic system to be solved for the normal
velocity on Dirichlet boudaries (free surface) and the potential on Neumann boundaries. This
system is made of the influence coefficients of linearly varying distributions of sources and
dipoles on boundary elements. These coefficients are computed using analytical formulas for the
near—field, and different approximate formulas for the intermediate and far-field. A
preconditioned GMRES iterative scheme is used for the solution of linear systems of equations.

After solution of the boundary value problem, free surface conditions are integrated in
time, which is the second step of the mixed Euler-Lagrange method. We presently use a fourth
order Runge-Kutta scheme, with "frozen" coefficients, that is influence coefficients are updated
only once per time step, while four solutions of the boundary value problem are performed. With
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sufficiently small time steps, this approximation has no noticeable effect on the accuracy of the
simulation, and results in significant savings of computer time.

The overall simulation strategy is the same as in the fully Lagrangian version. The
incident wave is given by the stream function theory of Rienecker & Fenton (1981). This steady
wave solution is used to prescribe the initial conditions, as well as the time dependent boundary
conditions on the outer surface of the computational domain. At time t = 0, the potential and wave
elevation given by the incident wave model are imposed on the whole boundary of the
computational domain. The Neumann condition on the body is then progressively introduced,
with a ramp over half a wave period. During the simulation, Neumann conditions given by the
wave model are maintained on the vertical outer boundary. On the free surface surrounding the
body, the original conditions are applied, while on the other part, up to the outer Neumann
boundary an absorbing layer is introduced, in which the damping is applied only to the
perturbation to the incident wave. This allows a smooth transition between the numerical solution
on the free surface and the incident wave model imposed on the outer boundary.

The quality of free surface velocity and geometry computations is essential to the
stability and accuracy of mixed Euler-Lagrange method. In the present formulation, bi—cubic
splines are used for the interpolation of the potential and vertical coordinate at the free surface.
These quantities are interpolated in radial and aximuthal directions, accounting for the
axisymmetric geometry of the computational domain around the cylinder. Fluid velocities,
tangential and normal vectors at the free surface are then computed directly from the spline
coefficients. The spline representation along locally orthogonal coordinates also allows an easy
implementation of smoothing formulas. In the following computation, five points Chebyshev
formulas are applied in orthogonal directions at each free surface point. The smoothing occurs
every five time steps.

NUMERICAL RESULTS

The numerical model has been applied to the solution of the nonlinear diffraction
problem on a bottom mounted, surface piercing cylinder.

~ The cylinder radius is R/H = 0.862, where H is the water depth. The incident regular
wave amplitude is A/H = 0.1, with wavelength A/H = 4.09 and period T = 5.23 VH/g. A
computational domain of radius Ro/H =9 is considered, and the mesh is composed of 4968 panels
on the half domain, that is a total of 9936. A view of the domain in its initial configuration is
given by figure 1. The diffracted wave field is absorbed by an annular absorbing zone of radius
Ra = A. The time step is dt = T/50, and the simulation was run over 320 time steps, that is more
than six wave periods. In figure 2, we plot the horizontal force on the cylinder. A quasi steady
state is observed after the end of the first period with only small variations of maxima and
minima. Figures 3 and 4 give the wave heights at two different locations on the cylinder
waterline, respectively at the weather side (0 = ) and at the lee side (0 = 0). These signals are
also quite regular, despite on overshoot around tVg/H = 15., after about three periods of
simulation. The origin of this phenomenon is uncertain, but we believe that it is due to the
influence of a partial reflection on the absorbing zone. Figure 5 is a view of the computational
domain at an instant close to the maximum runup on the weather side of the cylinder.
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CONCLUSION

We presented one of the first results obtained with the new version of our numerical
model. Although a complete validation process is desirable, we consider that these preliminary

results are very promissing and prove that fully nonlinear diffraction computations are now
possible.

We intend now to undercome a validation of the model, by comparing nonlinear
numerical results with existing higher order frequency domain results for small amplitudes, and
with experimental data for higher incoming waves.
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Figure 1 — Computational domain att=0
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Figure 2 — Horizontal force on the cylinder
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Figure 3 — Runup at upwave position
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Figure 4 — Runup at downwave position

Figure 5 — Maximum runup at upwave position — tVg/H = 30.78
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