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1 Introduction

The interaction of waves with circular plates in deep water is examined. Linear wave
theory is employed and the three-dimensional problems are expressed in their integral
formulation. The radiation and scattering problems for a floating disc are solved by the
Boundary Element Method making use of the fact that the Green’s function satisfies the
free-surface condition on the plate.

When the plate is submerged, the problem can be formulated by means of a hypersin-
gular integral equation. For two-dimensional problems a method of solution was adopted
by Parsons & Martin [1] where the discontinuity in the potential across the plate was
expanded in terms of Chebyshev polynomials of the second kind. This work has been
extended and further applications are given in [2] and [3]. We generalise the method for
our three-dimensional problems: now the double hypersingular integral over the circular
plate is evaluated analytically by choosing a suitable expansion of the potential discon-
tinuity in terms of appropriate orthogonal functions. Physical quantities are obtained
numerically; in particular the occurrence of negative added mass is noticed.

2 Formulation and Solutions

Cartesian coordinates (z,y,z) are chosen with the origin in the mean free surface; the
water occupies the region where z < 0. Linear water wave theory is employed and, under
its usual conditions, the time-harmonic motion is expressed by

®(z,y,2,t) = Re(¢(z,y,2) e™™").
A plane incident wave is represented by
A ,
¢inc = g_— eK(z+w),
where A is the amplitude, w is the frequency and K is the wavenumber satisfying the

usual dispersion relation for infinite depth: K = w?/g.
The potential ¢ is now written as

¢ = ¢inc + ¢sc
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with @s. describing the scattered wave. ¢ satisfies Laplace’s equation in the water, the
free-surface condition

Opsc _
K ¢sc - Oz =0,
the radiation condition and the condition of no flow through the disc,
a(z>s¢: aqﬁinc
on ~ on’ (1)

where n is a unit normal on the disc.

Integral equations are derived using the deep-water three-dimensional Green’s func-
tion, G. This satisfies Laplace’s equation in the water, the free surface condition and the
radiation condition; it can be expressed in the form

1 e u+ K .
G(%%Z,faﬂaf) = E + p f:‘t_l‘{“ e( +Ou Jo(ﬂ?‘) d/l,

where r = [(z — )* + (y — )*]"/* and R =[r® + (z = )"]'/%.

2.1 Solution for a floating disc

The disc, D is on (z,y)-plane with its centre at the origin of the system. Applying
Green’s theorem to ¢, and G and using (1) together with the fact the G satisfies the free
surface condition on the disc, we find

~inbutp) = [ 6lpua) (Koela) + 525(0)) dg,

where the normal has been taken upwards, p is any point in the water or on D, and ¢
is on D. This equation is solved by the Boundary Element Method, using a piecewise-
constant approximation. After choosing a set of N panels S;, j = 1,... N over the disc,
the approximate value of the potential on S, ¢!, solves the linear system

N i a(binci
(M—i—])q)sc—-——‘ on
with
1 .
5 = — [ Gas;, 2
M y SjG S; (2)

where the superscript ¢ on O¢inc/On and G indicate the evaluation of these functions
at a chosen point in panel S;. Some integrations in (2) are carried out analytically
and while about one hundred panels seemed to be sufficient to compute the solution for
the scattering problem, 36 panels showed good results for radiation problems. Physical
quantities, such as the differential scattering cross-section and damping coefficients (for
the radiation problems), have been calculated.
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2.2 Solution for a submerged disc

Consider a submerged disc with its centre on the z-axis. The disc radius is taken as 1,
without losing any generality. The discontinuity in the potential across the disc, [¢] is
given as the solution of the following hypersingular integral equation

0 1 0?
—'a-n‘;ﬁbinc(p) - Z;r’ -741; [¢] anpanq G(p,Q) dSq

subject to condition [¢] = 0 on the edge of D. In fact, this equation is valid for a thin
plate of any shape (it need not be plane). For a circular plate, the kernel is given by
0*G 1

anpanq = _R—Z{ + ’C(pa q)a

where R = |p — q| and K is regular and known. To solve this equation numerically, let
(s,a) be plane polar coordinates on the disc. Then, expand [¢] using Fourier series in

the angular variable
x

[6(s,2)] = ck(s) coska. (3)

k=0
It is known that if the coefficients ci(s) are expanded in terms of associated Legendre
functions as

Ck(’") = Z(:) w;'c P£+2j+1(\’ 1- TZ)/PII:iéj-‘I-l(O)’ (4)
J:

where wf are constant coefficients, then
1 o0
& [¢] dS; =" ox(r) coskb,
k=0

where

o) = 15 up A pin o) Pl (VA1)
- +25+ m *

2 & Vi 2k +2j + 1)!

These formulae give the exact solution for potential flow past a rigid disc in an unbounded
fluid. For our problem, they are convenient for the following reasons: they allow the
double hypersingular integral to be evaluated analytically; and they imply that the edge
condition is satisfied, because the coefficient in (4) vanishes at r = 1.

Substituting truncated versions of the expansions (3) and (4) into our hypersingular
integral equation, a collocation scheme gives a linear system to be solved. The matrix
is Vandermonde-like and is ill conditioned by its nature. Collocation at points chosen at
random or on a spiral are found to give efficient collocation schemes.

The method was implemented for horizontal and inclined discs. For scattering prob-
lems, the known relation in terms of the Kochin function, H (see [4])

_ K?
" 4rwA Jo

Im (H(0)) " \HO) do,

was verified. The added-mass and damping coefficients were computed for the radiation
problem. The added mass presented negative values over a range of frequencies when the
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disc is sufficiently close to the free surface. Increasing sharp maxima in the added mass,
as the frequency gets small, were noticed. These maxima are accompanied by rapid drops
in the damping coeflicients as frequency increases. This confirms a result of Mclver &
Evans [5] deduced from the Kramers—Kronig relations.

In order to understand the behaviour of the added mass for small frequencies we are
currently studying the problem of two identical parallel discs in an unbounded fluid; this
is equivalent to the free-surface problem for a submerged disc when K = 0. The aim is
to obtain low-frequency asymptotics, especially when the disc is close to the free surface.
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DISCUSSION

Yeung, R. W.: Can you comment on the type of singularity of the potential occurring at the
edge of the submerged plate? Does it appear to be weaker than the case of a 2-D plate where
it is known to behave like "2, r being distance from the edge? Is your discretization scheme
consistent with this singular behaviour?

Farina, L. & Martin, P.: The behaviour is as in 2-D: the jump in potential across the plate,
[¢], behaves like r'? as r — 0. This square-root zero is incorporated explicitly, using (3)
and (4).

Yeung, R. W.: For the submerged disc, any antisymmetric boundary condition about the
y-axis (say a rolling plate or wave diffraction about the plate) would yield a net circulation
on the plate. This would invalidate your potential formulation unless a vortex sheet is
introduced at the edge of the plate. Please comment on this point. My remark does not
suggest any negativism towards the correctness of your solution for the boundary-value
problem as stated.

Farina, L. & Martin, P.: No. We do not consider a lifting flow. Perhaps it is simplest to
consider a submerged spheroid with b as its smallest diameter. There is no difficulty in
calculating the added-mass and damping coefficients for the spheroid (in principle, at least)
when it undergoes heave or roll oscillations, say. Now let 5 —> 0; the resulting problem is
that considered by us.

Kuznetsov, N. : What is the physical meaning of your homogeneous edge condition in the
case of a submerged disc?

Farina, L. & Martin, P.: We have explained the problem above. We seek a bounded
potential everywhere in the fluid. It can be discontinuous across the plate but not in the fluid;
hence [¢] = O at the edge.

Falnes, J.: Your results indicate a sharp drop in the added mass at a certain short interval
of Ka (a is the disc radius) which means that there is a rather sudden increase in the stored
potential energy (as compared to the kinetic energy) [5]. Could the corresponding wave
elevation above the disc be approximately described by a Bessel function, and could this point
of view be of use to quantitatively explain the occurrence of the abrupt change in added
mass?

Farina, L. & Martin, P.: Thank you for your encouragement. We are actively seeking such
an approximation, motivated by the paper of Miles entitled Resonant amplification of gravity
waves over a circular sill JFM 167 (1986) 169-79). His problem (bottom-mounted, vertical,
truncated, circular cylinder) has three dimensionless parameters; the problem of a submerged
horizontal disc in deep water is attractive for further study, as it depends on only two
parameters.

continued/ ...
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Peregrine, D. H.: Have you investigated trapped modes in connection with the strong
variation of added mass?

Farina, L. & Martin, P.. Not yet. We do not expect to find any true trapped modes; if they
do exist, they would provide a counter-example to the long-sought general uniqueness theorem
for submerged 3-D bodies. However, we do expect to find ’leaky modes’, as studied by
Miles (see reply to Falnes) following Longuet-Higgins (1967).
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