Ringing loads on gravity based structures
O.M. Faltinsen, Div. of Marine Hydrodynamics, NTH, Trondheim, Norway

Ringing is of concern in survival conditions for gravity based structures (GBS) and
tension leg platforms (TLP) in deep water. Ringing is caused by extreme waves exciting
transient resonance response of structural modes. The relevant resonance periods are signifi-
cantly lower than the peak period of the wave spectrum. The interesting natural period for a
GBS is about one third of T),. Basic studies on ringing loads on a fixed vertical and infinitely
long circular ¢ylinder in deep water incident waves were reported by Faltinsen, Newman
and Vinje (1994) (FNV) and by Newman (1994) (N). FNV assumed regular incident waves
and N considered irregular waves. Their procedure will be generalized to a monotower with
non-circular cross-sections varying along the cylinder axis.

Cartesian| coordinates (x,y,z) are defined with z = 0 in the mean water level. Positive
z is upwards.| The x-y planes and y-z planes are symmetry planes for the cross-section
of the monotower. The surface normal vector @ = (ny,ng,n3) is positive into the fluid
domain. Incident longcrested irregular waves propagating along the x-axis are studied. The
characteristic Ikra,ve amplitude A and structural cross-dimension a are O(¢), where ¢ < 1.
The characteristic wave length is O(1). The cylinder (monotower) is slender and fixed. The
cross-sectional shape can vary slowly along the cylinder length so that ny = O(¢). Potential
flow is assumed. The total velocity potential is written as ¢ = ¢; + és + 9, where ¢; is the
incident wave [potential. ¢g can be found by slenderbody theory and matched asymptotic
expansions. We can write ¢p = ¢r + ¢s as

ép = 10 + u(z + $11) + u-(0.52% + ¢21) + wees + f(2,1) (1)

in the near field of the cylinder. Here ¢jo,u,u,,w are functions of z and time ¢ and the
values of ¢1,041/0z, 0?¢1/08x2, 8$1/0z at = O,y = 0. $11,421 and Po5 satisfy a 2-D Laplace
equation in the cross-sectional plane and the body boundary conditions.
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Here N (r1,n2). #11 has a 2-D dipole behaviour far away from the cylinder and
matches with a far-field 3-D horizontal dipole distribution along the cylinder axis. ¢25 and
part of ¢9; have a far-field sourcelike behaviour. f(z,t) is a consequence of matching with a
far-field 3-D source distribution along the cylinder axis. It follows from the boundary value
problem that @17 = O(¢), ¢a1 = O(€?), 25 = O(e?), f(2,t) = O(?).

% is a consequence of that ¢, does not satisfy the free surface condition to correct order
of magnitude. | The variation of ¢ along the cylinder length is the same order of magnitude
as the variation in x and y. So 1 satisfies a 3-D Laplace equation. Due to the strong z-
variations of 9|it is essential that the formulation of the free surface condition for ¢ is based
on perturbations about the linear incident free surface elevations and not about z = 0. The
free surface condition is
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on z = (3.

Here g is the acceleration of gravity, (r; is the linear incident free surface elevation at
z = 0,y = 0. The body boundary condition is 9% /9n = 0. ¢ will be asymptotically small
when (2 — {11) = o(¢). It follows from (3) that ¥ = O(&?).

The horizontal loads per unit length due to ¢p only can be written as

“PA(Z) +¢111(z)3t +w6 (ua11(2)) + O(€®) (4)

for a totally wetted cross-section. Here A(z) =cross-sectional area, p = mass density of
the fluid, D/Dt =substantial derivative and a;; = fz: ¢11n1ds is the two-dimensional added
mass in surge. Y is the cross-sectional surface curve. (4) can be found by starting out with
Bernoullis equation for the pressure. The first term is the Froude-Kriloff force and follows
by using the divergence theorem on the volume inside the body. The second term follows
from the —p0¢,/0t- term and by noting that @a1, ¢25 andf(z,t) will not contnbute to the
force. The last term can be derived by first noting that 0.5 fz dsnl(VqS, = f —g—%ds
This follows from the divergence theorem. The right hand side of the last expression can be
rewritten by the body boundary condition. We then combine the pressure forces resulting
in the last term of (4) by first considering the force on a segment of length dz. This means
we study pw [ [ [(ud11),n1 — (ud11),n3]ds. The last term in (4) follows now from Stokes
theorem. The integration of the total pressure force which acts on the cylinder in the x-
direction, can be decomposed into integrations from z = —oo to 2 =0, from 2 =0 to z = (11
and from z = (1 to z = (n1 + (2. {1 + (2 is the local wave elevation at the cylinder surface
correct to O(e?). It includes both the effect of the incident waves and the locally scattered
free surface. The contribution by integrating (4) from z =0to 2 = (y; is

5
F'¢n+ 0.5(?1-&711(;»4 +ay;) + O(e%) (5)

The vertical pressure gradient from z = {5; to z = {1, + (2 is approximately hydrostatic.
The resulting horizontal force correct to O(e®) is

Fys = —-0.5pg[a ny(3ds = put/; dsny(z + é11) [{r2 — (u*/9) (0.5(V$11)? + O¢11/0z)]
1 1 (6)

where 3; is T at z = (1. (s2 is the second order part of the incident wave elevation at
z = 0,y = 0. The horizontal force due to 1 can be written as

FOOY = 5 / | (bt Voo - VImdS +O(e*) (7)
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The body surface Sp extends from z = —o0 to z = (. (7) can be rewritten by
Green'’s second identity. We introduce ¢;, as an auxiliary function and rewrite I/ sp Yrnads
as [ [ sp $11%12ds. Here Sp is the horizontal plane outside the cross-section at z = (;;. By

using (4) and symmetry and antisymmetry properties of ¢,; and its derivatives, it follows
that

2
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(8)

By partial integration it follows that [ [ V¢p - VyndS = —u [ £ (£(z + ¢11)) dS

The integration is over Sp and 0/0s is the tangential derivative along the body surface
in the cross-sectional plane. We introduce an auxiliary potential ¢, that satisfies 2-D Laplace
equation in x and y and the body boundary condition

O0dq 0 o
5?7 = 5% (nla(ﬂ: + ¢11)) (9)

The solution for a circular cylinder is ¢, = (a/r)? cos 26 where a is the cylinder radius
and (r,8) are polar coordinates so that £ = rcos8, y = rsiné.

By using Green’s second identity, the free surface condition, symmetry and antisymmetry
properties of the integrand, it follows that

p / 5 Vép - Vin,dS = —(2/g)u’up / /S ) dS¢a (20¢11/0z +(Vé11)?)  (10)

F®) can be interpreted as a point load moving with z = ¢y;(¢). Only 2-D potentials are
needed in the calculations. Part of the Sp-integration in (8) and (10) can be made analytically
by expressing ¢1; as T2, Anr~ ("D cos(2n + 1)8 and ¢, as T2, B,r~2" cos 2nf outside a
circle that encloses the body. The presented theory includes load terms of O(A?). The time
dependence can be discussed similarly as in N. If we are interested in third harmonic load
terms in deep water, it is sufficient to describe the incident wave held by a linear theory. If
we want to find all the nonlinear load components described by the present theory, a third
order theory for the irregular incident wave field is needed. The theory can be generalized to
other wave headings, cross-sections without symmetry planes and a multicolumn GBS. The
effect of body motion can be included. Generalization of the method for a TLP needs further
studies. The effects of junctions between columns and pontoons, heave forces and roll and
pitch motions should be evaluated. This can be done by matched asymptotic expansions. Let
us as a simplified example consider a slender vertical circular cylinder with finite draft. 3-D
flow corrections are needed at the lower end of the cylinder. One needs to solve boundary
value problems with a semi-infinite cylinder to represent the inner-flow region near the bottom
end. The resulting horizontal point load correctly to O(e®) includes terms proportional to u,
Uyz, uty and uw. This implies that the third order harmonic horizontal force terms are due to
free surface effects. Similarly can be concluded from an analysis of the flow at the junctions

47




between columns and pontoons. At least fourth order harmonic load terms are needed in

the ringing analysis of a TLP. It should be noted that the present theory gives fourth order

harmonic terms in roll and pitch moments about an axis close to the mean free surface. -
This work started as a part of the Joint Industry Prospect “Higher order wave loads

effects on large volume structures” and has been continued and further developed in a close
cooperation with Professor J.N. Newman.
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DISCUSSION

Grue, J.: In some experiments performed at our department, and in reports I have seen about
generation of ringing responses, higher harmonic loads (and responses) are very small when
the wave amplitude is below a certain value, but pronounced when the amplitude is above this
value. Can you comment on this in relation to your theory?

Faltinsen, O. M: The ringing loads are proportional to wave amplitude cubed so they have
a strong variation with the wave amplitude. There is no threshold value for the wave
amplitude so that ringing loads do not exist below that amplitude. I believe this is consistent
with experimental data that I have seen.

Rainey, R. C. T.: The perturbation scheme in F.N.V. produces, at successive orders, the
same 1st, 2nd and (probably*) 3rd order wave loads, as does Stokes expansion, applied to a
slender cylinder. So despite the assumption that "A/a = 0(1)", stressed in F.N.V., it appears
that the wave loads could have been produced equally well using Stokes expansion (i.e.
assuming A/a—0). Do you agree?

* See my abstract; also Malenica and Molin’s numerical results, recently submitted to J.F.M.

Faltinsen, O.M.: The assumption A/a=0(1) implies that the free surface conditions are found
by a perturbation of the dynamic and kinematic free surface conditions about a horizontal
plane following the incident waves at the cylinder axis. Part of the solution varies strongly
over a depth of 0(A) from that horizontal plane. I cannot see how one can get the same
solution by assuming A/a is small and satisfying the free surface conditions in the
conventional way on the mean free surface.

Tulin, M.: If the relevant parameters are g, d (diameter), a (wave amplitude) and o (wave
frequency), then the non-dimensional force must depend on two non-dimensional parameters:
(a0%/g) and a/d. An equivalent set is: ak, kd. In your theory, the non-dimensional co-
efficient seemed to depend on only one of these, kd. This suggests that the wave steepness,
ak, is not a governing parameter (for instance, a certain value of ak is not required for the
onset of ringing). Is this reasonably in accord with the facts?

Faltinsen, O. M. : 1t is true that a certain value of ak is not required for the onset of ringing.

This is also in accordance with experimental facts that I have seen. However one would in
practice define ringing to be a problem when the response is beyond a certain value.
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