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Introduction

The simulation of linear wave-forces on floating bodies in real sea-states are often performed by the
summation of sinusoidal components. The second-order wave forces, which are of great importance
to the design of offshore structures, are then obtained by the double summation of sinusoidal
components. In order to study the statistics of the second-order forces and motions, relatively long
records must be obtained of the simulated quantity. The records of the slow-drift forces and motions
of floating bodies must in particular be long, due to slow convergence of the statistical parameters

(Emmerhoff, 1994).

The abstract presents a method for the fast computation of second-order forces using the combi-
nation of Fast Fourier Transform (FFT) and a representation of the Quadratic Transfer Function
(QTF) by summations of basis functions. The presented method requires O(N log N) operations,
where N is the number of sinusoidal components, whereas an alternative straight forward summa-
tion of the sinusoidal components requires O(/N3) operations.

Formulation

The second-order wave force F(t) can be written as a double Fourier integral of the form,
+o0 .
Ft) = @n)7 [ dodue ot 2(0,) 2(w:) Flwr,03), (1)

where Z(w,) is the complex wave-amplitude with frequency w, and F(w,,w,) is the QTF at the
frequencies w,, w,. The expression (1) can be computed by FFT, which requires O(N?log N)
operations. This abstract, however, presents a more efficient method, which takes advantage of the
following two facts:

o The domain for which the product Z(w,)Z(w,)F(w,,w,) is non-zero is finite and not very
large, due to the rapid decay of the wave-spectrum for large frequencies in real sea-states.

37




¢ The QTF can be represented by a sum of basis-functions for each direction w, and w,, which
allows the double-integral to be written as a sum of products of single integrals.

The B-spline basis functions were here selected for the representation of the QTF. Using the notation
of (Rogers & Adams, 1990), the QTF is thus written,

ny n2

F(wl7w2) = ZZBijNi,k(wl)M',k(wz)’ (2)

=1 j=1

where the magnitude of n,, n, depends on the nature of the QTF. The functions N; k(w1)y, Mja(w,)
are the B-spline basis functions of order k, where k = 2 defines a bi-linear representa.txon and
k = 3 a bi-quadratic representation. The definition of the basis functions are found 'in (Rogers
& Adams 1990), page 446. The B;;’s are unknown coefficients which are determined by enforcing
the equation (2) at a number of discrete frequencies w(™, w{?, and by solving the corresponding
system of equations. The number of coefficients n,n, may be Iess than the number of the discrete
frequencies w(®, w{¥, which makes the system of equations over-determined. The system may then
be solved by the method of least squares. With the B;; coefficients known and using equatlons (1),
(2), the second-order force can be written,

F(t) = Elefd, : (3)

fa = T/. —iwltZ(wl)Ni(wx), I (4)
fio = S / dwze~iw2tz(w2) i Biij(wa)- ! (5)
—c0 raert |

The integrals in (4)-(5) can now be computed by single FFT.

Results

The surge quadratic difference frequency transfer function F(w,, —w,) for a realstic offshore platform
has been computed over a rectangular region of w,, w, in the first quadrant using thq computer
code SWIM. The real part of the QTF, multiplied the JONSWAP spectrum, is shown 111 Figure 1.
The number of terms of spline functions, n,, n, were selected to 20, and the QTF-matrix evaluated
at 20*20=400 locations. The B-spline basis functions were here bi-quadratic (k = 3).

The time-history of the second-order force is shown in Figure 2, as computed by theiexpresswn
(3). The time-history was compared with the results of the alternative expression (1), o’btamed by
double FFT, and the results were identical to 5 digits. .

Some more results of the efficiency of the method will be presented at the workshop.
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Figure 1: |Z(w,)||Z(w,)|F(w,,w,) for a realistic platform.
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Figure 2: The second-order force F(t).
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DISCUSSION

Yeung, R. W.: A crucial assumption in this development is that the QTF is separable with
respect to the @, and w, variables. The very good agreement with the direct double FFT
method perhaps suggests that it is in fact the case. Can it be established?

Emmerhof, O. J., Kim, S. & Sclavounos, P.D. : The assumption in this method is that the
QTF can be represented by polynomials in each direction in a piecewise manner. So for finite
and reasonably smooth QTFs, only a reasonable number of coefficients are required in the

expansion (the splines). Therefore, in the limit, any QTF is separable with respect to
®, and o,. :

Martin, P. A.: Isn’t it true that
F(o,0,)= F(o,0,)?

If so, why don’t you write

‘7(0)1,(02)=E. 1B;’i ]Vi,k(ml) N},k(mz)’

i=lj=

with B; = B, so that your representation is symmetric?

Emmerhof, O. J., Kim, S. & Sclavounos, P.D. : It is true that
F(0,,0,)=F(0,0,)

for the difference frequency force. And you are right that one can use the same spline basis
functions for the o, direction and the w, direction. That’s exactly what we used in the
examples. In reference {2], however, they use the notation that is shown in eq. (2).
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