Resonances for the three-dimensional Neumann-Kelvin problem in
the case of an immersed body
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Introduction

We deal with the wave-resistance problem, which consists in determining the strength exerted on a
body moving in a vicinity of the free-surface of a fluid at rest. Experimental curves of the wave-
resistance with respect to the velocity of the body may have oscillations. We’d like to explain this
phenomenon by the existence of resonances, i.e., complex values of the velocity for which the potential
of the flow becomes infinite. Such a result has been obtained in the two-dimensional case by J-M.
Quenez et C. Hazard [1]. We extend it to the three-dimensional case for an immersed body.

1 Neumann-Kelvin Problem

1.1 Equations

We consider the linearized three-dimensional wave-resistance problem, also called Neumann-Kelvin
problem. In the referential of the body, the flow comes from —oo with a uniform velocity equal to
UoZ. Q is the fluid domain, F'S is the free-surface and the body B, whose boundary is I, is assumed
immersed.

The perturbation of the uniform flow denoted ¢y, is the solution of the Neumann-Kelvin problem
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any datum on T, that is to say we replace the left hand side of equation (b) by any given function f.

In this problem, we set v = The study of the resonances leads to consider these equations for
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This problem is denoted N'K,(f). The aim of this paper is to extend MK, (f) to complex values of v
and to show that this extended problem, called NK,(f), is well-posed except for a denumerable set of
values of v, called resonances. Let us briefly describe the successive steps. We first find a problem,
denoted Q,,Qf), set in a bounded domain, equivalent to 'K, (f) when v is real (part 2.1). Then, we
prove that Q,(f) has a unique solution @, for any v in a certain set denoted € — IP. The elements of
IP will be the resonances (part 2.2). Using ¢, we find, for any v € € —IP, the solution @, of problem
NK.(f), which extends meromorphically NK,(f) (part 3). Before we give some details, we need to
introduce the associated Green function.

1.2 Neumann-Kelvin Green function

The Neumann-Kelvin Green function, G,(M, P), is the potential created at point P by an immersed
source located at point M. This function has been determined by many authors (see for instance [2]).
The question of uniqueness of this function has been investigated by C. Guttman [3]. We summarize
these results in the

Lemma 1 The Green function is unique and is given by
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where §(t,P,M) = V1 +12((xzp — 2m) + t(yp — ym)), T is the distance between P and M, r''is the
distance between P and M’, and M’ is the symmeirical point of M with respect to the free-surface
FS.

To study resonances, we have to consider complex values of the parameter v. We need the following
lemma, whose proof is too long to be given here:

Lemma 2 Let € = {v € C, Re(v) > 0} and K a compact domain of
2
{(M,P)G{IszIR‘} , M # P, {zp = 2zp = 0 and wp<a:M=>yM96yp}}.
G.(M, P) can be analytically extended with respect to v € C in the space of functions C>(K).

This lemma means there exists a function C:”,,(JV{, P) analytic with respect to v € C, uniformly with
respect to (M, P) in K, such that for v € R*, G, (M, P) = G,(M, P).

2 Reduction to a bounded domain

2.1 Problem @,,(f)'

We show that we can find a problem set in a bounded domain equivalent to problem NK,( f), and
this will allow us to introduce the resonances. Let ¥ be any surface surrounding the body B and not
intersecting the free-surface F'S.

FS

For v € C, we seek @, solution of the problem §,(f)
(a) A, =0 in Q,
G,(H){ () %oy =f 3 onT,
© @ = /F (¢(P)3np G (M, P) — f(P)G,(M,P)) dTp on .
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We now use the method of coupling between variational formulation and integral representation (see
Jami-Lenoir [4]). Using the uniqueness of the Green function (lemma 1), we show that for v € IR**,
NK,(f) and Q,(f) are equivalent in the following way

Proposition 1 For v € R**,
if Pu is solution of NK,( f) then ¢, = @, |g is solution of Q,,( f), where @, |5 is the restriction of
@, to 8,

if ¢, is solution of §, (f) then o, (M) = / (¢u(P)8npGu(M, P) - f(P)G,(M,P))dI'p is solution
of NK,(f) and @,|g =

2.2 Study of problem @u(f)

For v € C, we call ’R,(V) the solution operator of §,(f), which maps the datum f onto (,, where @,
is the solution of Q,,( f) when this problem is well-posed. Using a theorem due to S. Steinberg [5], we
show the

Proposition 2 JIP discrete countable set of C such that ’fé(v) : f — @, is a meromorphic operator
with respect to v € C, whose poles are the elements of IP.

This result means that problem_ Q,,( f) is well-posed when v € C - IP, and its solution operator R(V)
is analytic with respect to v € € — IP. Moreover, for 7 € PP, 72(1/) has a Laurent’s series expansion in
a vicinity of #. We now give a sketch of the proof of proposition 2 (for more details see [6]). In a first
step, we show that solving Q,,( f) is equivalent to > prove that an operator denoted J (v), is invertible.
In a second step, using lemma 2, we show that J (v) form an analytic family with respect to v € C
of Fredholm operators. We now use Steinberg theorem for such a family: we know that if Jup € C
such that J (vp) is invertible, then 3IP discrete countable set of C such that, Vv € C - P, J(v) is
invertible and its inverse, that is 'R,(u), is a meromorphic operator whose poles are the elements of
IP. To show that J (vo) is invertible, we follow Vainberg and Maz'ya (see [7]) and prove that there is
one and only one solution to NKyy(f), when vp is closed to 0%. Then, using the equivalence between
NK.,,(f), and Q.,(f) (see proposition 1), we see that 7 (1) is injective and also invertible thanks to
Fredholm’s alternative.

3 Meromorphic continuation of Neumann-Kelvin problem

3.1 Solution and continuation operators

For v € IR**, we call the solution operator of NK,(f), R(v), which maps the datum f onto ¢,, where
¢y is the solution of NK.,(f), when this problem is well-posed. For » € C — IP, we call continuation
operator, R(v), which maps the datum f onto @,, where @, is defined by

VM € Q, ¢,(M) = /P (6(P)2,,Go(M, P) ~ f(P)G,(M, P)) dTp and $, = R(¥)(f) is the unique

solution of @ ve

3.2 Resonances

First, using proposition 2, we prove that @, is a meromorphic function with respect to v € C. Then,
thanks to proposition 1, we show that for » € R** — P, @, = ¢,, and @, is also the meromorphic
continuation of ¢,. Thus R(v) is the meromorphic continuation of R(v) with respect to v € C and we
can show that its poles are the elements of IP. Moreover, using the same techniques as in proposition
1, we prove that R(v)(f) is the solution operator of NK.,(f), where this problem is the same problem as

NK,(f),except that equation (e) is replaced by ¢, (M) = / (¢,(P)an,,a,,(M P) - f(P)G,(M, P)) dl'p.

The fact that R(v) coincide with R(v) for v € R**, shows that NK,(f) is equivalent to N'K,(f) for
v € R**, and thus NK,(f) is really an extension of NK,(f). We summarize all these results in the
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Theorem 1 R(v) is the _meromorphic continuation of R(v) (solution operator of NK,(f)), that is

the solution operator of NK,(f) (estension of NK v(f)). The poles of R(v) are the elements of 1P,
and we call them resonances.

3.3 Interpretation

For the wave-resistance problem, the datum f = —Up (Z- 7). Theorem 1 shows that

Gy = R(V) (f = =Uo (Z - %)) is a meromorphic continuation of ,. If 7 is one of these poles, this entails
that the wave-resistance R,,, that is an integral depending on @,, has a Laurent’s series expansion in
a vicinity of 7.

We see that if 7 is closed to the real axis, the fact that the surface S tends to infinity near 7 influences
the shape of the curve C that is the intersection between S and the plane Jm (v) = 0. This entails the
oscillations we notice on wave-resistance curves.

Conclusion

We obtain the result in the case of an immersed body. By using a surface ¥ intersecting the free-
surface, we can prove the same result by a more complicated way. We intend to use this second method
to extend the result to the case of a surface-piercing body.
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DISCUSSION

Kuznetsov, N.: The work is very interesting. It is done in the best traditions of the French
school. The only remark concerns references. The following paper by Kochin should be
mentioned, since results of Maz’ya & Vainberg are essentially based on it.

Kochin, N. On the wave-making resistance and lift of bodies submerged in water. Proc. Conf.
Theory of Wave Resistance, Moscow, 1937, pp. 65-134. English translation in SNAME Tech.
Res. Bull. 1-8 (1951).

Doultreleau, Y. : I'd like to thank Professor Kuznetsov for his comment. First, I have
carefully read the paper of Maz’ya and Vainberg, and a part of my talk is essentially based
on their ideas. That must be said. Second, I didn’t know this work by Kochin and I am
grateful to Prof. Kuznetsov for making this remark .
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