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1 Introduction

Cooker and Pergrine (1990) used a theory of pressure impulse (Lamb, 1932) to investigate the
high, short-lived pressures and sudden changes in the velocity field which occur when a wave
hits a sea wall. Although an impact is very brief, lasting only milliseconds, the pressures exerted
are at least ten times hydrostatic. Recently Chan (1994) has shown that predictions accord
with experiments. However we have not yet justified analytically, the use of pressure impulse
P (the time-integral of pressure during the short time of impact), particularly for fluid near a
free surface. P is approximately a solution of Laplace’s equation and the free-surface boundary
condition at the instant of impact is taken to be P = 0. Pressure impulse theory rests upon
neglecting the nonlinear terms in Euler’s equations, but near the free surface —8¢/dt ~ 1u? and
the nonlinear terms are not relatively small. In this work we take account of these previously
neglected terms.

2 Analysis

Instead of using the time-integral of pressure P, we define, at a point x in a potential flow, the
quantity:

Q(x) = p(és — ¢a) (1)

where V¢ = up(x) is the given velocity before impact, and V., = ua(x) is the velocity after
impact. Throughout we use subscripts ; and , to denote before and after impact, respectively. In
the interior of the fluid domain, @ satifies Laplace’s equation exactly, with Neumann conditions
on the solid boundaries, as shown in figure 1. The impact on the vertical wall is represented by
the condition 8Q/0n = u,/p, where u, is a prescribed velocity component normal to the wall.
Also Q is asymptotically equal to P as the impact duration At tends to zero. (An impulsive
pressure field does not generate vorticity so the existence of the velocity potential @, is assured
if ¢ is given.)

Since an impact is a sudden change in velocity we may plausibly write the following con-
struction for the three velocity components:

ui(x, 1) = upi(x) + Hi(t){uai(x) — usi(x)}- (2)

where i=1,2,3 . For an incompressible fluid V.u; = V.u, = V.u = 0 and a separation of
variables argument leads to Hy(t) = Ha(t) = Ha(t) = H(t), say, and instead of (2)we have

u(x,t) = wp(x) + H(t){ua(x) - up(x)}. (3)

Here H(t) is expected to increase monotonically from the value 0 as ¢ — —oo to the value 1
as t — +00. The significant change in H (and hence in the velocity) occurs in the short time
interval [t,,], which is more conveniently written [~At/2, At/2}, where At =1, — 1 is the
impact duration. Substituting (3) into Bernoulli’s law we have an expression for pressure

P, 1) = ) + H(D{pa(3) ~ ()} + Qg + 5(H — H2VQ)* 0

where VQ = p(up — u,). The pressure, according to (4) undergoes a change from p, before
impact to p, after impact, where p, is the pressure according to Bernoulli’s law, and is known
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once @ is known. During impact the term in (4) with greatest modulus is generally QdH /dt, and
is associated with the spike in pressure records long-observed by experimenters. The coefficient
of the last term in (4) is 3(H — H?), which is 0 before and after impact and is a “spike” during
impact with a maximum value of only } so we may neglect the last term in (4) in most of the fluid
domain. However, near the free surface, where the flow speed squared (directly proportional
to (VQ/p)?) is greatest, we expect (8p)~1(VQ)? to be a significant pressure compared with
QdH/dt. Indeed these terms must balance each other on the free surface itself, where P=pp=
P = 0. From these considerations we obtain the form of H(t) and an appropriate free-surface
boundary condition for Q. A separation of variables argument leads to 2dH/dt/(H — H?) = k
with solution

1
H(t) = gy (5)
where k is a positive separation constant. If we take k = 18.4/At (where ¢, = —A¢/2 and

to = At/2) then H(t;) = 0.01 is conveniently small, and H(¢,) = 0.99 is conveniently near to 1,
the desired limit of H as t — co. Generally k is so large that H resembles Heaviside’s function,
as shown in figure 2. The other part of the above separation of variables leads to a free-surface
boundary condition for Q:

Q= —;%(VQ)Q (6)

If Up is a typical speed of impact and h the wave height then in dimensionless (starred) vari-
ables the surface boundary condition is @* = —e(V*Q*)? where ¢ = UpAt/18.4h is much less
than unity. Equation (6) replaces the surface condition that the pressure impulse P = 0. In
equation (4), away from the free surface, the peak pressure is approximately Qk/8 or 2.3Q /At
or 2.3Q*pUoh. Recalling that () ~ P for short-duration impacts this value of the peak pressure
agrees well with that of Cooker et al (1990) 2P/At, derived from physical arguments.

Although in (6) we have a nonlinear boundary condition, we gain in this approach a treatment
of the kinetic energy (though see Korobkin, A. (1995), this meeting, for further analysis).

3 Changes in the total energy brought about by impact

During the short time of impact the free surface moves little and we may neglect changes in the
potential energy of the flow. According to pressure impulse theory, the kinetic energy lost by a
wave impacting a region 5 of a rigid impermeable solid surface is

AE=1 / unPdS @)
2Js

where u, > 0 is the component of wave impact velocity along the outward normal of the domain.
In terms of ) the energy loss has an extra contribution from the free surface, F:

AE=1 [ un@ds + ﬁ}; /F (0Q /0n — 2pun)(VQ)*dF. (8)

The first integral in (8) is positive and the second integral is negative, principally because
0Q/0n < 0 on F. Hence for an appropriate choice of At (i.e. k) we may ensure that AE = 0,
which is a reasonable expectation for the types of impact computed by Cooker and Peregrine
(1991), and by others. This also suggests that the energy lost to the impact of water against a
solid surface is gained by fast-moving fluid near the free surface, notably in violent jets.
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0Q*/0n* = uX FREE SURFACE

FIGURE 1: Boundary-value problem for @Q* = Q/(pUph) in the domain of a wave at the instant
of impact against a sea wall, where Up is a characteristic impact speed and A is the overall
depth. The boundary conditions are the same as for pressure impulse, P, except for the new
free-surface condition in which € = UpAt/(18.4h).
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FIGURE 2: The function H(t), which governs the suddenness of the change in velocity field due

to the impact, plotted for impacts of various duratiorn
At = 1, 0.5, 0.01 0.05, 0.01, 0.005, 0.001 seconds. These times are much shorter than typical

coastal wave periods, and the last three are typical durations for wave impact pressures.

30




