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Introduction

In the previous paper presented at the last workshop, a 3-D panel method using Rankine singu-
[arities was developed to calculate the free surface flow around ships in steady motion at small
angles of yaw, Zou (1993). This method is now expanded for calculating other lifting potential
flows about three-dimensional surface-piercing bodies such as to apply to the transverse modes
of unsteady ship motions. The ship motion problems have been successfully attacked by some
authors using three-dimensional Rankine panel methods, e.g. Bertram (1990), Nakos (1990),
McCreight (1991). However, theoretical and numerical 1esearch in thls aspect is still in its
initial stage, and more eff01ts are still needed.

This paper describes a three-dimensional panel method using Rankine singularities for solving
the radiation problem with forward speed effects. Emphasis is placed on the transverse modes of,
ship motions. In addition to the Rankine source distribution on the boundary surface, a Rankine
dipole (or vortex) distribution on the ship’s centerplane and the symmetry plane downstream
of the trailing edge of the ship is used to account for the lifting effect. Correspondingly, a
Kutta condition is introduced and imposed at the trailing edge. This method can be used to
calculate the radiation forces on ships with forward speed and serves as an alternative to the
planar motion mechanism experiments for determining the hydrodynamic coefficients in the
ship maneuvering problem.

Formulation

We consider a ship traveling with steady forward speed U on the undisturbed free surface and
undergoing small harmonic oscillations €;(¢) ( = 1,2,---,6) about its mean position in deep
or shallow water. The fluid is assumed to be inviscid and incompressible. The water depth is
assumed to be constant. The absolute velocity of the fluid is represented by the gradient of a
disturbance velocity potential ¢. The exact boundary value problem in the coordinate system
(z,y,z) which moves with the speed U is given by

Vi =0 in the fluid domain, (1)

G+ (Vo — Y_/‘s) V(= ¢, on the free surface, (2)

( = l(cﬁt 7 Vo + %V(ﬁ -V¢) on the free surface, (3)
g

Veé-i=(V,+ \7T) -1 on the ship’s hull, (4)

¢. =0 on the water bottom, (5)

V¢ =(0,0,0) at infinity, (6)

where ( is the elevation of the free surface, g the acceleration of gravity and 7 the unit normal

vector on the ship’s surface. V, = (U,0,0) is the steady speed of the ship, Vp = f & x 7 is the

251




velocity due to the oscillatory motions, with £= (61,62,83), @ = (€4,65,66) and 7 = (2, v, 2)

Moreover, the velocity potential should satisfy a radiation condition and, for the transverse
~ modes of ship motions, a Kutta condition at the trailing edge.

To solve this boundary value problem, the disturbance potential ¢ is divided into a steady part

#(z,y,z) due to the forward speed U and unsteady parts @;(2,y,2;t) due to the harmonic
oscillations &;(t), j = 1,2,---,6. It is assumed that ¢; < ¢, so that the steady potential ¢ and
the unsteady potential ¢; can be determined separately.

The determination of the steady potential corresponds to the wave resistance problem. There
are several successful numerical procedures, either linear or nonlinear, for solving this problem.
In this paper, emphasis will be put on the determination of the unsteady potential.

For the harmonic motions, the unsteady potential is expressed in the form

0i(2,9,21) = Re {&; 65(z,9,2)e}
where  means the complex amplitude.

Linearizing the unsteady problem about the solution of the steady forward speed problem, we
obtain the boundary condition on the mean free surface elevation z = ¢

—w? @i + iwB@; + 2wW - V;

+[2(A - UV$,) + BW]- Vg; + W - [(W - V)V@5] — 9¢: = 0, (7)
where .
W = Vé-V,

A=V (%vq‘s : \72/3>
[m“/ (A= UVE,) ~ ngz]z

B = = — ,
g-W-Vg,

and the boundary condition at the mean position of the ship’s surface Sz
V@; - it = iwn; + my, (8)
where

(ny,n9,n3)

(ng,ns,n6)

(my,mg,m3) = —
)

(m‘l, ms, Mg

A three-dimensional Rankine panel method is used to solve this problem. The boundary surface
is discretized with quadrilaterals or triangles, and Rankine sources are distributed on these
panels. The symmetry (5 = 1,3,5) and the antisymmetry (j.= 2,4,6) of the motions are
utilized, so that only half of the boundary surface and the flow field needs to be considered. The
source strengths are determined so that the corresponding boundary conditions are satisfied.
In this work the calculation will be limited to the case 7 = 22 > };, so that the radiation

condition can be satisfied by a technique like for the steady potential.
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Moreover, for the transverse modes of ship motions which involve lifting effects, a dipole distri-
bution on the ship’s centerplane and on the symmetry plane downstream of the trailing edge of
the ship is used to produce the required circulation, and a Kutta condition is imposed on the
trailing edge for determining the dipole strengths. In this work, the Kutta condition is applied
indirectly by satisfying a pressure-equality condition (Hess (1974)) in the form

(+) (=)

P =p at the trailing edge, (9)

where the superscripts (+) and (-) stand for the right and left side of the trailing edge, respectively.

The linearized dynamic pressure due to the oscillatory motions is given by
pi = —p(wje + W Vi;) on Sp. (10)

From (9) and (10) follows the pressure-equality Kutta condition for the antisymmetric modes
of ship motions j = 2,4,6

zwcpJ Ut,o + Vel ‘(»+) =0 at the trailing edge, ’ (11)

where
B =0, B0 =~ 3 = 3,
S a() s a(5) () a(0) () o (-
997 _(19] ) (10]:5 e QO]_.E ) ij - So_gy ) (;933;) b _99‘53)
For the symmetric modes of ship motions, the pressure-equality Kutta condition is satisfied
automatically. Hence the dipole strengths can be set to zero.

In a numerical procedure, the Kutta condition is imposed on the collocation points on the ship
surface adjacent to the trailing edge. Correspondingly, the semi-infinite dipole sheet is divided
horizontally into strips, the number of which is equal to the number of the panels on the ship
surface adjacent to the trailing edge. The dipole strength on each strip is assumed to change
proportionally from zero at the leading edge to a unknown value at the trailing edge. This
dipole distribution is equivalent to a system of horseshoe vortices, the vertical bound vorticity
of which is independent of z between the leading edge and the trailing edge. For example, on
the [-th strip we have

¥(z, z,) = 4, = constant Xo(z)) <z < Xp(z,),y=0 (12)

where X, and X are the z-coordinates at the trailing edge and the leading edge, respectively.

In contrast to the steady flow, the dipole strength downstream of the trailing edge is not
constant, which means, the strength of the vertical vortices in the wake is no longer zero on
the horizontal strip. For the harmonic oscillatory motions, it follows from the condition of
continuity of pressure across the free dipole sheet and Kelvin’s theorem

) Xal(z))~=x "\/ " -
o) = e [ e de —eoca S Xala) =0 (03

a(z)
Hence there is only one unknown 4, for the [-th strip.

I"lom (7), (8) and (11) we can determine the complex amplitude of the unsteady potential,
. The complex force amplitude on the ship in mode & due to a harmonic oscillation of unit
amphtude in mode j is given by

Twj=—p //_ (1w; + W V;)ngdS. (14)
J J3g
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From (14) follow the added-mass ax; and the damping coefficient by;

In comparison with the steady forward speed problem, now not only the induced velocities,
but also the unsteady potential and the second derivatives of the steady potential in the m-
terms need to be calculated for collocation points on the ship’s surface. The potential due
to the source and dipole distributions can be analytically or numerically calculated. On the
other hand, the calculation of the second derivatives of the steady potential due to the source
distribution on the ship’s surface may cause significant numerical difficulties. This numerical

1
atj = —5 Re{Ti;},

1
b — = Im{T};}.

Il

problem is still to be solved.

Status

This work is still in progress.
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DISCUSSION

Newman J.N.: I wonder if it will be good to impose the Kutta condition at the stern,
since this may overpredict some maneuvering coefficients.

Zou Z.J.: For calculating the lifting potential flow, it is important to impose a Kutta
condition to determine the circulation. Under the assumption that no separation appears
ahead of the stern, as in the case of small transverse motions, the Kutta condition can be
imposed along the trailing edge of the hull.

Bingham H.: I believe that your F.S.B.C. is applied on the steady wave pattern, ¢. Are
your panels also distributed on this wavy surface?

Zou Z.J.: Yes. The F.S.B.C. is satisfied at the collocation points on the mean free surface
z = (. But the source distribution on the free surface is raised to a horizontal plane above
the free surface and replaced by point sources.
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