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The developement of "DRACONE?” (a long flexible tube) to transport oil and other
liquids was started by Hawthorne in 1956(see Hawthorne(1961)). From a hydrody-
namic point of view there are two major problems which are important for a flexible
tube.

1). Stresses, motions and shape of a flexible tube in waves.

2). Directional stability of a flexible tube under tow.

In this paper we concentrate on the first problem.

A new linear theory to study hydroelastic responses and stresses of a long flexible
tube in head sea has been developed. We assume here that the thickness of the
skin(for the tube) is infinitely thin, so we can neglect the mass of the tube in our
analyses. The elastic deformation of membrane is neglected. Fig.1 shown a typical
cross section of a membrane structure(tube) in still water. We assume that the
density p, of the fluid outside the membrane is 1.0, which is larger than the density
p; of the fluid inside the membrane. The static shape is dependent on the percentage
fillings and the densities of the fluid inside and outside the tube(see fig.2). When
the filling ratio v is going to 1.0, the geometry of the membrane structure will be a
circle. The static shape of a membrane structure is given by the following equation
of condition of equilibrium, ' ’

P=E 1)
ds T

where df and ds are defined in fig.1, AP is the difference pressure between static
pressure inside and outside the membrane and T the static hoop tension. Difficulties
in solving eq.1 for the cases p,/p; # 2 was pointed out by Hawthorne(1961). A new
numerical iteration scheme to estimate static shape and stresses of a flexible tube
have been developed by Zhao and Triantafyllou(1994).

To carry out the dynamic analyses we should further assume that the incident waves
are linear regular waves, the wave amplitude is small compared with a characteristic
dimension(D) of the tube and the length of the tube(L) is large compared with D.
Due to the slenderness approximation(i.e D/L is small), the flow inside the tube
maybe treated as a one-dimensional problem. Outside the tube a boundary element
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method based on two-dimensional approach has been applied(see Zhao and Faltinsen
(1988)). The hydroelastic deformation of the tube has been taken care of by the
body boundary conditions. The problem is solved in the frequency domain. A strip
theory approach has been applied. For each strip(cross-section) we have unknowns
Py, n3, A and V;, where P; is the average dynamic pressure inside the tube, N3
is the vertical motion of the rigid body, A; is the change of the filling ratio and
Wi is the average longitudinal velocity inside the tube. The four equations to solve
the problem are one-dimensional equation of motion for fluid inside the tube(Euler’s
eq.), one-dimensional equation of continuity, the vertical force is equal to mass times
acceleration and the pressure P is a function of g—%Al +»g—’%ng+ ...... .

The deformation of a membrane structure consists of two parts, the most impor-
tant contribution is due to internal surging of the fluid inside the tube(It has been
included in the formulation above). That means the filling ratio for each section is
a function of the time. This has been illustrated in fig.2. The other contribution
(which is not included in the formulation above)is the deformation due to the pres-
sure distribution(both inside and outer side) around the membrane structure for a
given filling ratio. This effect has been investigated by studying the problem of a
two dimensional membrane structure in beam sea. A linear theory has been applied.
The problem has been solved by applied the Green’s second identity both for the
inner and outer problem. The outer problem is solved in the similar way by Zhao
and Faltinsen(1988). In addition an linearized dynamic equation based on the eq.1
has been applied. This is done by assuming that each parameter in eq.1 consists of
static and dynamic part and the dynamic part is a small perturbation.

For a long flexible tube in waves, the non-linear effects could be very important. For
examples, the breadth of a membrane structure has large variation near intersection
region betweem fluid outside tube and the tube(see fig.1), the stresses in the tube
change fast as a function of the percentage fillings and the part of the tube could
be totally submerged due to large relative motions or p; is close to p,(example of
that is the fresh water inside tube and salt water outside). In this analysis some of
the non-linear effects have been investigated and the importance of the non-linear
effects are pointed out.
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Fig.1 definition of parameters.
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Fig.2 shapes of a floating membrane structure for various percentage fillings and
fluid densities inside. p, is the fluid density outside the tube, p; is the fluid density
inside the tube and = is the filling ratio.
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