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Summary

Linearised planing surface theory was pioneered by Maruo (1951). The effect of lineari-
sation (justified by smallness of draft or angle of attack) is that the problem is analogous
to thin airfoil theory. This analogy becomes an equivalence at high Froude number, i.e. in
the absence of gravity, the pressure distribution on a planing surface of given wetted length
being then identical to that on the lower surface of an equivalent thin airfoil of the same
chord. Maruo (1951) developed numerical tools for incorporating gravity, and others such
as Squire (1957), Cumberbatch (1958), and Oertel (1975) have made various modifications
and improvements on the computations; see Tuck (1990) for a review.

One aspect of this analogy that does not carry over exactly concerns the inverse
square root leading-edge singularity in the pressure distribution. In thin airfoil theory,
this singularity simply models the high-velocity flow around the nose of the airfoil, toward

the upper surface of the foil, and can be eliminated easily by incorporating local thickness
near the nose (Tuck 1991, Lighthill 1951).

For planing surfaces, no such equivalence can hold; there is no upper surface! Instead,
the pressure singularity (which formally yields a free surface that meets the body vertically
in the linearised theory) must model the (nonlinear) formation of a bow splash. This was
already appreciated by Wagner (1932), who used exact nonlinear but gravity-free planing
flows to illustrate the phenomenon. The conclusion of Wagner (1932; see also Cumberbatch
1958 and Wehausen and Laitone 1960, p.588) is that the thickness of the jet is proportional
to the square of the draft or angle of attack of the body, and in particular proportional to
the square of the strength of the leading-edge pressure singularity in the linearised solution.

It is the purpose of this note to expand upon this relationship, and to demonstrate a
universal local flow near the leading edge. -

A local flow

Consider the two-dimensional irrotational flow whose streamlines are depicted in Fig-
ure 1, with complex potential f(z) defined implicitly by the pair of equations

f=¢—log(

1
z=C+4/( +log( )

217




The fluid velocity is given by

\/Z -1 . (2)
Vi+1

which has unit magnitude when ( is real and negative. Thus the negative real ( axis is
a free surface of constant pressure in the absence of gravity, and it is also the streamline
¥ = m. The shape of this free surface in the physical (z,y) plane is given by the equation

U — Y =

z=-r+logr; r=(r+y)?/16 (3)

The free surface is asymptotically the parabola y = —41/—z far upstream, becomes vertical
at (—1,—7 — 4), and then turns back, finally approaching the plane y = —7 as £ — —co.

On the other hand the positive real ¢ axis is the streamline 1 = 0 on which y = 0, and
thus represents a horizontal plane wall. There is a stagnation point on that wall at (5,0)

at which a stagnation streamline ¢ = 0 bifurcates. Figure 1 shows sample streamlines
including the free surface, wall, and stagnation streamlines.

This flow thus begins as a right-flowing unit-magnitude uniform stream at infinity.
The top layer of thickness = is then diverted backward into a left-flowing stream, the lower
surface of which is free, while the upper surface is attached to the horizontal wall. This
left-flowing stream is the local representation of the bow splash or jet. Its free surface is
gravity-free since the effects of gravity are negligible on the small length scales of the local
bow flow, where fluid accelerations far exceed gravitational accelerations.

The above flow can easily be re-scaled to give a general character to its dimensions.
Thus the flow with complex potential U(6/7)f(27/6) has a uniform stream U and a jet of
thickness §. The fluid velocity at infinity then behaves as

u—iv — U —2U+/6]m 271/ (4)

Then if p denotes the excess of pressure over the free-stream value, this implies that on
the wall y =0 as £ — 400,

8
p — 2pU%/ — (5)

T

exhibiting an inverse square root behaviour with respect to x in the outer expansion of
this inner solution. This can be matched with the inner (near leading edge) expansion
of an outer flow, described by linearised planing surface theory, with an inverse square
root singularity in the pressure distribution as + — 0. Explicit matching then relates the
strength of this pressure singularity to the jet thickness and ultimately the splash drag.

In carrying out this matching by the method of matched asymptotic expansions (Van
Dyke 1975), it is important to note that the inner scale is of order § = €2, where € measures
the size of the draft or angle of attack, and hence measures the over-all magnitude of the
outer disturbance flow. The formal inner region is defined by order unity values of inner
coordinates (X,Y") defined in terms of outer coordinates (z,y) by

T = Thow + X

6
y=ybow+€2Y ( )
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Here (2bow, ybow ) defines the “bow” or leading edge, which is the apparent point of coritact

between the free surface (for © < zpow) and the wetted body (for = > Zhow ), at lea.st as
seen in the outer domain.

There is of course no such well-defined point of contact in the general case of arbitrary
€, since splash formation occurs near (Zpow, ybow ), and in principle the body is wetted by
the splash far upstream as well as downstream of that point, at least until gravity re-asserts
its influence and the splash falls back on the oncoming stream. However, there is a unique
wetted length in the linearised outer flow, and the values of zrow = O(1) and ypow = O(e)
are determined by that linearised solution, for any given body shape. These can be thought
of as outer approximations to the location of the stagnation point in Figure 1, since the
inner corrections to this location are O(e?). It is also because of this O(e?) stretching in
(6) that the local representation of the body surface is a horizontal plane, irrespective of

any O(e) slopes or curvatures of the body; Figure 1 is a universal local bow flow valid for
all planing surfaces.
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DISCUSSION

Kajitani H.: Though my question seems to be a little outside from your present work, I
consider that the inclusion of viscosity is important around quick turn of the flow hitting
the inclined flat plate. We appreciate if you give us fundamental features of viscous effect
on determining the physical structure of the planing splash.

Tuck E.O.: The spirit in which I have discussed the spray-root (inner) region for planing

flows is that there are large curvatures of streamlines there, so that inertial accelerations of
fluid particles are large, and therefore viscous forces are (locally) negligible. Viscous drag
then arises not from the inner region, but rather in the outer region, and is proportional
to the wetted length, to a reasonable approximation. However, I do understand that there
may be indirect viscous effects in the inner region, especially if the spray jet collapse on
the incoming flow, so creating a “bow vortex” with big energy dissipation. However, if o
is small, the jet size § = O(a?) is so small that this is assumed to be unimportant. (But
it is very important for bluff bows!)

Palm E.: The resistance is due to two effects: the wave resistance and the splash. If you
consider a body (planing) with curvature, you can minimize the splash-resistance. Would
that mean that the total resistance becomes smaller?

Tuck E.O.: The quick answer is “Yes”! In fact, at any Froude number, it is possible
to curve the body so as to make the splash resistance vanish — by eliminating the splash
entirely. (The curvature is not too practical, being concave downwards.) It is interesting
that this is quite like “shock-free entry” for aerodynamics, i.e. the choice of camber for
an airfoil so as to eliminate the leading-edge singularity. In the present paper, I have only
discussed the flat plate case, but indeed it would be very interesting to discuss curved
bodies, and the relationship between § and body curvature for such bodies.

Korobkin A.: What do you think about a possibility to construct higher-order approx-
imations of the solution as o — 07

Tuck E.O.: In general this would be very difficult, and perhaps better option is a full
numerical solution for arbitray a. However, one aspect which would be difficult for such
a numerical program, but where a second-order expansion might be useful, concerns the
“ultimate fate” of the splash jet. Here I have assumed that, because its thickness is O(a?),
we do not need to worry about this matter. But maybe it should be studied.

Tulin M.: Since your splash model is in the gravity free limit, what is its region of
applicability for finite Froude numbers?

Tuck E.O.: The theory is a small-a but arbitrary F; = U/+/gf theory, where € is the
wetted length. The theory says that the inner region is of size O(a?l) = §, so the local
Froude number there is F5 = U/+/g§ = F;/a in order, i.e. large Fs; hence neglect of ¢
in the inner zone. But you are really thinking how small can F; be. Obviously not as
small as «, since if Fy = O(a), F5s = O(1). In practice, I can compute down to zero speed,
but there is a practical limit (discussed by Squire) below which the flow fails to separate
cleanly from the trailing edge, i.e. the “Kutta” condition is not satisfied.
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Newman J.N.: Can your inner solution be used in the three-dimensional problem?

Tuck E.O: The aim of such an extension would be to study flow which is approximately
two-dimensional in a plane which is oblique to the free-stream direction, but normal to the
hull. This extension is very challenging. It perhaps interpolates between the strictly two-
dimensional (in a plane containing the free stream) theory of the present paper, and the
slender-body theory of Tulin (yesterday’s session) where is approximately two-dimensional
in a cross-flow plane (normal to the free stream). I recommend this as a good extension
to consider by others interested in this class of problems.
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