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The linear potential problem on movement of ‘a submerged horizontal cylinder in
regular waves at constant forward speed has been studied only in a case of homogeneous
fluid [1-4]. To generalize this problem, let us consider the case of two-fluid system, both of
the fluids being inviscid, incompressible, with constant, but different densities. The body
moves below the interface, keeping constant time-averaged submergence and oscillates.
harmonically due to the action of following or head interfacial waves with the crests
parallel to a cylinder axis.

For the sake of simplicity, let us suppose that the upper fluid is bounded by a rigid
lid and the lower one is of infinite depth. The motion of a body under a free surface of
the homogeneous fluid is a particular case of this problem.

Let the fixed coordinate system be taken with Z -axis directed along an equilibrium
position of the interface, orthogonally with respect to a cylinder axis, and y -axis pointed
vertically upwards. In the undisturbed state, the upper layer, with the thickness H and
density p;, occupies the domain —o00 < Z < 00, 0 < y < H, the lower one, with density
p2 = p1(1 +€) (e > 0), occupies the domain —o00 < Z < 00, y < 0.

In the fixed frame of reference the incident potential may be written as

P = %qﬂé’) expli(wot F koZ)],

() _ _cosh ko(y — H) (2) _ ko

0 sinhkgH =~ °° ’
where the incident-wave frequency wo depends on wavenumber ko according to the
dispersion relation, ‘

wo = ko), QUk)=+/egkF(k), F(k)=1+ e+ cothkH,

signs ”+” and ”-” correspond to waves travelling from right and from left, respectively,
superscript s is equal to 1 for the upper layer and 2 for the lower one, g is the
gravitational acceleration.

In the moving reference frame z =z — Ut the total potential can be written as

4
o) (z,y,t) = Uz + UBC)(z,y) + Re 3 7,0\ (z,y)e™",

j=o

where ®() is the steady potential due to unit forward speed; the components @gs)
( = 1,2,3) are the radiation potentials due to motions of the cylinder with unit am-
plitude in each of three degrees of freedom; n; (j = 1,2,3) are corresponding motion
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amplitudes; @) = o exp(Fikoz) and @' are the potentials of the incident and
diffracted waves, respectively; and 7o = 74 is the incoming wave amplitude. In the mov-
ing reference frame, the incident waves arrive with the encounter frequency w = woFkoU.

Based on the assumptions of linear potential flow theory, we can write the following
governing equations for the steady potential

ADW =0 (0<y<H), AP =0 (y<0) (1)
with boundary conditions B
03 /oy =0 (y = H),
928  928(1)  ¢g 5OW) adM  53®)
A+ =~ T gy =% By oy =0

o9? 0 (y = —o0) 990) L)
Oy y o Oz Oz

The cylinder is assumed to be located entirely in the lower layer and the following
boundary condition for d®@ should be satisfied at mean position of body surface L

0 (z — o), l < 00 (z — —00).

8@ /on=n, (z,y€ L),

where 7 is the inward normal of the cylinder surface and n, is the component of 7
in the z -direction.
The radiation and diffraction components of potential satisfy the following equations,
similar to (1):
AN =0 (0<y<H), AP =0 (y<0)

with boundary conditions

08" /oy =0 (y = H), (2)
(14 D2® — DO 4 ¢gdd(V oy =0, 08 /dy = 8P /0y (y=0), (3)
82 /9y =0 (y — —o0), (4)

98 [9n = iwn; — Um; (j =1,2,3), 080 /on = -08{)/on (z,y € L),

where

D = (Ud/0z — w)?,  (n1,n2) = (nzyny), na= (y — yo)nz — (& — To)ny,
520 529 9 a9 ! L)
(m17m2am3)"_{anax’.anaya%[(y—yo)( 9z - ) —(.’IJ——:ZQ) ay ]} :

Zo and yo are the coordinates of a point with respect to which the body oscillates
rotationally.
The radiation condition for @gs) (j = 1,...,4) states that a wave travelling in the

direction of the forward speed and with its group velocity larger than the forward speed

is far in front of the body, and otherwise the waves propagate behind.

After the steady and oscillatory potentials have been obtained, the pressure in the
fluid can be determined from the Bernoulli equation. The hydrodynamic forces and
moments can be obtained by integrating the pressure over the body surface. The steady,
radiating and exciting loads are determined as for homogeneous fluid with a free surf@ce
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The coupled finite-element method [3] seems to be the most efficient numerical method
for determination of hydrodynamic loads on a horizontal cylinder advancing in  regular
surface waves. This numerical method combines a finite-element approx1mat10n of the
potential in a region surrounding the cylinder with a boundary-integral-equation represen-
tation in the outer region. This method can be applied in a case of stratified fluid, if
density variation takes place only on the horizons above or below a submerged body.

To use the coupled finite-element method it is necessary to determine the Green
function G)(z,y,£,n), satisfying the equations

AGM =0 (0<y<H), AGD =2r8(z—¢ty—1) (y<0)

and boundary conditions similar to (2)-(4) The solution of the problem for the Green
function in the lower layer G(® takes the form:

2 > | (k) k(y+n
G ln(r 'I'1) + 2(1 + 6) pv kP(k)e X

x{ [(U2k2 — W) = (UK + w2)92(k)] cos k(z — £) + 2iwkUQ? (k) sin k(z — {)}dk+

+m{cy explki(y + n — i(z ~ £))] — caexplka(y + 1 — i(z — €))]-
—azexp(ks(y + 7 +i(z — £))] + asexplka(y + 1 +i(z - £))]},

where pv indicates the principal-value integration,
rP=(@—€>+(@y—n)’ ri=@-6"++n)

4
P=T[P, Pis(k)=Uk+wFQk),

s=1

P3,4(k) =Uk—w F Q(k),

oy 0+ ORI
T 2k[U — yey(ks)]

cy(ks) = dQ/dk|k=k, is the group velocity of the wave k,. The equation Py(k) =0 has
two simple real solutions, k; and kg, with k; > ko, if only

=lats=1,2,3and y= -1 at s =4),

U<U, w<uw, - (5)

where U, = +/egH 1is the critical velocity for a steady problem in the two-layer and
we = Qk,) — Uk, is defined post-solving the equation cy(k;) = U. Solutions k; and
k, coincide, if w = w,, and are absent, if conditions (5) are not met. There are no real
solutions for equation P;(k) = 0. In contrast, Eqs. Ps(k) =0 and Py(k) =0 always
possess unique real solutions, such as k3 and k4, respectively, with k3 > k4. The
properties of k, (s = 1,...,4) and waves corresponding to them are essentially similar to
the case of a homogeneous fluid of finite depth discussed in [5].

In a limiting case of an infinitely great depth of the upper layer H — oo, the &k,
solutions are equal to

(1—27':i:\/1—4'r), k3q = (1+27ﬂ:\/1+47‘)

k1,2 -
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With the numerical method mentioned, there have been determined the hydrodynamic
loads on submerged circular and elliptical cylinders. The steady loads (wave resistance,
lift and moment) on a submerged cylinder advancing in two-layer fluid bounded either
by a rigid lid or by a free surface can be found in [6]. The solutions of radiation and
diffraction problems without forward speed for two types of boundary conditions are
presented in [7]. The version of the Haskind-Newman relation is derived for two-layer
fluid.-

In a case when two-layer fluid is bounded by a free surface, both surface and internal
wave modes exist. An interesting peculiarity of the diffraction problem for stratified fluid
is that when the given mode wave incidents on a body it scatters not only into itself but
also into all the other modes. This is one of the mechanisms of energy redistribution due
to wave motions, in particular, that of the surface wave energy transfer to depth.

In [6, 7] the comparison is made between numerical solutions and the approximate
analytical solutions based on the use of the Kochin function, valid for deeply submerged
elliptical cylinders under the interface. In a steady problem, the approximate solution is
obtained for a wave resistance, and for all the characterlstlcs of radiation and diffraction
loads at U = 0.

The approximate solutions are obtained for forward-speed radiation and diffraction
problems for deeply submerged elliptical cylinder. The diagonal damping coefficients and
exciting forces are calculated in a manner like that in [5]. All the components of radiation
and diffraction loads are compared for different cases when a cylinder moves under a free
surface in homogeneous fluid or under an interface between two fluids bounded by a
rigid lid or unbounded in vertical direction. The fluid stratification is shown to affect
significantly the hydrodynamic characteristics of a submerged body over certain ranges
of the body movement velocities and incident. wave frequencies.
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DISCUSSION

Eatock Taylor R.: Is the fact that A3; = A;3 etc. in your numerical results a con-
sequence of a very accurate discretisation, or does it follow automatically from the finite
element formulation you have used?

Sturova I.V.: I have presented the numerical results which related to relatively small
velocity of body U. In this case the relations of Timman-Newman take place. But for
larger velocity U these relations are not valid and the numerical results confirm this.

Grue J.: Consider an oscillating cylinder at zero forward speed. How large can the
amplitudes of the internal waves be compared to the amplitudes of the free surface waves?

Sturova I.V.: For small frequencies of the cylinder oscillations and at zero forward speed,
the amplitude of the internal waves can be much greater than that of the surface waves.
The same is valid also for a non-zero forward speed of the cylinder.
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