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Wave drift damping of floating bodies in the three horizontal modes of motion is a current
important problem within offshore technology. Earlier works have considered wave drift damping
due to translatory motions. In this contribution a theory is developed for evaluating wave drift
damping due to a slow yaw-motion, i.e. a slow rotation about the vertical axis. The problem is
considered in the relative frame of reference rotating with the slow yaw motion of the body. This
frame of reference is connected to a fixed frame of reference by the rotation angle a(t), which is a
slowly varying function of time. There is no restrictions on the magnitude of the yaw-angle, thus
a(t) = O(1). The angular velocity, = &, is assumed to be small, however.

Potential theory is applied to describe the flow and the fluid pressure. An exact expression is
developed for the fluid pressure in the relative frame of reference. Perturbation expansions in
the wave amplitude and the slow yaw-velocity are then applied to the potentials. The problem
is solved to leading order in the wave amplitude and the slow yaw-velocity by means of integral
equations. The potential appears as unknown on the wetted body surface only. A discretization
of the free surface is needed for ordinary integration, however. The wave drift damping coefficient
in the yaw mode is then obtained by conservation of angular momentum.

Relevant to the present problem is a recent work by Newman (1993) who describes the motion
from the absolute reference system, assuming that the rotation angle o is small.

EQUATION OF MOTION IN THE RELATIVE FRAME OF REFERENCE
The equation of motion reads

pat +pv-Vv=~Vp-pgVz+H (1)

Here, v denotes the fluid velocity, p the density, p the fluid pressure, g the acceleration of gravity.

z,y, z coordinates with the z-axis being vertical upwards. Let @ = Qk (2 = &) denote the
slow angular velocity. H is composed by the Coriolis force, —2p82 X v, the centrifugal force,
—pft X Q@ X &, and the fictive force due to the angular acceleration, — pSt X @, where a dot denotes

time derivative. Thus, )
H=-200Xxv-pAxxae—pNxe (2)

Now,
v-\7v=c><v+\7%v2 (3)

where ¢ = V X v = —29 denotes the vorticity. Let the velocity be decomposed by v = v/ - Q x @.
We assume that v/ may be obtained as the gradient of a velocity potential #',i.e. v/ = V&'. The
equation of motion then gives

o0d’'
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By integration we obtain for the pressure

_p_0¥ 0% 14

We next introduce ' = ¢, + @, where ¢, = Qx5 denotes the potential generated by the body
when there are no waves and & denotes the potential due to the waves. (5) then becomes
_P_ 0% 04, 0% 6¢,

PRl TR L TRl 7

+5IVE V4 gz 406 (6)

Both (5) and (6) are exact.
(6) was derived by Nestegard (1990) assuming a constant angular velocity.

BOUNDARY VALUE PROBLEMS
The boundary conditions for xs at the body surface and the free surface read respectively,

%:n-(kxm)zne (7)
9xe
20 ®)

where in the last expression we have neglected terms being O(Q?).

The free surface boundary condition for ® is obtained by applying the individual derivative,
/0t + v -V, to (6) at z = (. After linearizing we obtain
8%® %% 0® 6245, 8% 0%

3~ 500 T2V Ve sy T B0 o +"’a =0 at z=0 ()

Here, V;, denotes the horizontal gradient. Let us then introduce & = ¢e“t. By noting that ¢ is
a function of a, Q, £, ..., we obtain

8@ = (i ¢+Qa¢

d 4
+ 9 ag + ...)et (10)

Thus, by introducing € = w§l/g and neglecting terms O(2) we obtain to leading order in ¢

. 0 7] 7]
- K¢+ 226—3—2 - Zzea—z 4 2i€Vxe - Vs + ipeVixs + 3¢ at z=0 (11)
PERTURBATION PROCEDURE
Let ¢ = ¢° + e¢'. Then ¢° satisfies
0
-K¢°+@3~=o at z=0 (12)
0z
0
8¢ _ =0 at the body (13)
on

¢° is composed by the incoming wave potential ¢; and the scattering potential ¢, i.e. ¢° = P+
K = w?/g denotes the wave number and J the (time-dependent) wave angle in the relative frame
of reference. The relative frame of reference is rotated the positive angle a relative to the fixed
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frame of reference. Hence 8 = By — a, where f, denotes the wave angle in the fixed frame of
reference.
The solution for ¢° is obtained by means of integral equations. This integral equation shows that
#° is an implicit function of § = By — a. Thus,
0 0 0
or. . b "
a B da 6,8

@' then satisfies

o9t _,.9¢°  ,.04°

- K¢ + 3. 3,3 + 22— 2iVhXe - Vad° — i¢° Vixe at z=0 (15)
APt .
% =0 at the body (16)

INTEGRAL EQUATIONS

The boundary value problem for ¢! is then decomposed by introducing ¢! = ¢!* + ¢'2, where
¢'! may be obtained in terms of ¢°. We then apply Green’s theorem to ¢'? and G°, where G°
denotes the zero speed Green function. This gives

9G° 3¢) S — { —2r(e) @ € Sp

oG° ( a7
sp+s(R) \ On on —4rp(x) €Y '

L ¥gas

where Sp denotes the body surface, Sp the free surface, S(R) the surface of a vertical circular
cylinder with radius R < oo surrounding the body, and V the fluid volume. Next Green’s theorem
is applied to ¢° and G*, where G! satisfies

—KG1+—Z=2i—- at z=0 (18)

By applying the boundary conditions for ¢° and G* at the free surface we obtain

0 1 0
¢° dS + 2i ¢°aids + (450 0G° _ 8¢ ) dS=0 (19)

Sp S(R) on an :

It may then be shown that (17) and (19) gives
8G° _ o8G*  0¢° B*G°
1 0_
/SB (¢ ~ P on T %95 on 8K) 45

, 0 0, X o —2n¢'(x) =€ Sp

=21 /S:« @ (thG -ViG” + G vi Xs)ds { —47r¢1(a:) zcV (20)

which is the integral equation for ¢!.
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THE DAMPING MOMENT

Consider then the vector product between the coordinate @ and the equation of motion. By
integrating over the fluid volume, using Gauss’ theorem and the transport theorem, we obtain
for the vertical component

=k- / p(e X n)dS =k-[- o / e X vdV - S(R)paz XndS —p s ® X v'v,dS] (21)

At S(R) we have that k - (@ X n) = 0 and that v, = v). The time averaged yaw moment then
becomes

M, = 0 / k- (e x v')dV - p / v RdS (22)
S(R)

It may then be shown that

[ @xviav = =2 [ xom(°63) + Im(436”)] (2)

Furfhermore we have
VgV, = "‘R [¢o 7 (24)

By then expanding the yaw-moment by
M, = M, + ¢pBes (25)

where M,, denotes the moment when the yaw motion is zero, and introducing ¢ = ¢° + ¢*, we
obtain the following expression for the damping coefficient Bes

Bes = — aﬂ f [xeIm(¢°¢? :)+Im(¢g¢°*)] s - -;- /s @ Re [¢gd% + ¢odr | dS (26)
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