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Introduction

In order to better understand the so-called "ringing" phenomenon, observed on some offshore structures
in the North Sea, we try to calculate the third harmonic of the forces acting on a vertical cylinder in
regular waves. The method that we use is based on the ring source method [1][2][3][4][5] with the Green
function expressed as a series of eigenfunctions. Since this method is the basis of the present work we will
explain it briefly.

Consider the standard hydrodynamic problem of finding a potential wich satisfies the Laplace equation
in the fluid, zero normal derivative on the fixed boundary, a radiation condition, and the mhomogeneous
free surface condition :
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The Green function of the problem which satlsﬁes the following set of equations :
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can be written in the form of the Fourier series :
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Potential and forcing term on the free surface are also expressed in the form of Fourier series and the
standard integral equation is written :
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This equation is considerably simplified if the last integral disappears. That depends on the behavior of
the potential ¢ at infinity and we will see later that this is true for the cases considered here.
If we suppose the Fourier coefficients of the potential ¢, on the cylinder, in the form:
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and if we write the integral equation for r = a — §, (6 > 0) we obtain the following expressions for the
Amn coefficients :
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Knowing the potential on the cylinder we can find the potential everywhere in the fluid :
T
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With Zmo = J,, (koa)/ H,, (koa) and Zmg = I,,(kaa)/ K., (kna).
The expression obtained in this way is exactly the same as in [1] where the authors use a special kind of
Green function which satisfies the homogeneous condition on ‘the cylinder.

Potentials

By employing the usual manner of linearisation we express the total potential in a perturbation serie
¢ = e 4+ 20 + 303 4 ... and we transform the difficult nonlinear boundary value problem to the
sum of the different boundary value problems corresponding to the different orders of approximation.
The coefficient « for the first order problem is v, for the second order problem is 4v and for third order
problem 9v, where v = w? /g is the wavenumber in the infinite water depth. Corresponding forcing terms
on the free surface are:
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In the potential of each order we must distinguish three parts ¢ = ¢r +¢pr +¢p. The incident potential
@7 is easy to find. The first part of diffracted potential ppr is also relatively easy to calculate because it is
in fact the standard diffraction potential with the normal velocity on the body which opposes the velocity
induced by the incident potential, and homogeneous condition on the free surface. The second part of the
diffracted potential pp represents the main difficulty of calculation because it satisfies the inhomogeneous
condition on the free surface (in which the part originating only from the incident potentials has been
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eliminated). On the cylinder it satisfies the homogeneous condition and the method presented in the
begining of this paper can be applied to calculate this part of the potential.

As we have seen first of all we must make:sure that the integralon thecontrol surface at infinity dxsa,ppea.rs
To prove this we must study the behavior of the potential at infinity. First order problem is trivial and
well known. We also know [6] the expression at infiniity for the second erder diffraction potential in Whlch
we can distinguish locked and free wave components:
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The expression for the third order diffraction potential at infinity can be found in the same way as:
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With v = ko tanh ko H = Lkotanh ko H = o tanh poH and:
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As we can see, for the third order potential we have a free wave component and two locked waves. Anyway,
in all cases the behavior is in O(R~/2) and, by employing the stationary phase method, we can show
that the integral disappears at infinity.

For the calculation of the forcing term on the free surface in the third order problem we need to know
the second order potential on the free surface and also its derivatives. In its calculation special attention
must be given to the treatement of the singularity which occurs on the free surface. This problem was
treated by employing a method similar to that in [1] in combination with an iterative procedure for the
given tolerance. Also, by employing some integral equality, we can avoid the calculation of either the
double derivative with respect to z or the derivative with respect to r of the second order potential, in
the free surface condition for goD) In our calculation we prefered to eliminate the double z derivative.
Very important problem is also the oscillatory infinite integral which appears in the expression for the
coefficients Amo. In the second order problem this integral can be calculated semi-analytically [1][2] but

in the third order problém it is not the case, because we have no analytical expression for tpg,),‘, and we
must calculate this integral numerically until convergence.
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Forces

By introducing the perturbation series for the potential in the expression for the forces we obtain the
following expression for the corresponding orders :
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where 7(1) and 7(?) are the free surface elevations on the body:
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The normal n is pointing out of the fluid and, in our case, since the problem is symmetrical about z
axis, we have n = n, = —cos 8. So we need to know only the first harmonic in the Fourier series of the
function under the integral in the expression for the forces. However to calculate it, in the third order
case, we must calculate the complete second order potential.

Results

For the second order quantities we obtain the same results as in [1][2]. Some preliminary results for the
third order quantities are shown on figures 1 and 2. Figure 1 represents the m = 1 component of the
forcing term on the free surface, in wich the double z derivative of wg) has been eliminated, and figure
2 represents the highly oscillatory integral which appears in expression for Af,::(), and which is in fact the
integral of the forcing term (fig.1) multiplied by H,,(rop)p.
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FIGURE 1.Real and imaginary part of the forcing ) — R
term on the free surface for third order problem.  } e R
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FIGURE 2.Real and imaginary part of the infinite
oscillatory integral.
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