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1.Introduction

A horizontal channel of infinite length and depth and of constanst width contains inviscid,
incompressible, two-layer fluid under gravity. The upper layer has constant finite depth and is
occupied by a fluid of constant density p. The lower layer has infinite depth and is occupied by a
fluid of constant density p* > p. A parameter € = (p*/p)— 1is assumed to be small. One of the
fluids (upper or lower) is bounded internally by an immersed horizontal cylindrical surface S,
which extends right across the channel and has its generators normal to the sidewalls. The free,
time-harmonic oscillations of fluids having finite kinetic and potential energy (such oscillations
are called trapping modes) are investigated. Trapping mode problem for a homogeneous fluid
in presence of submerged cylinders or other obstacles is investigated extensively {(see Evans et al.
and references cited therein for bibliography). Apparently, the first treatment of this problem
for the two-layer fluid is given by Kuznetsov (1993). In the case, when a cylinder is immersed in
the lower fluid, it was found that under some restrictions there exist two finite sets of frequencies
of trapping modes. The frequencies in the first set are close to the frequencies of trapping modes
for the homogeneous fluid (when p* = p). They correspond to the trapping modes of waves
on the free surface of upper fluid. The frequencies in the second set are proportional to £ and
correspond to the trapping modes of internal waves on the interface between two fluids.

Here similar results are presented for the case, when a cylinder is immersed in the upper
fluid. The general scheme of investigation is the same as in Kuznetsov (1993). First, the original
problem is reduced to the problem in the layer, which contains cylinder. Then perturbation
technique is applied in combination with Ursell’s (1987) method of integral operators. This
work was stimulated by a remark in Friis, Grue & Palm (1991), that long underwater tube
bridges are proposed to be constructed across Norwegian fiords, which are often occupied by
two-layer fluid (fresh-salt water).

2.Statement of the problem

The zyz-coordinates are chosen so that the y-axis is directed upwards and the z2-plane coincids
with the undisturbed interface between two layers. The depth of upper layer can be assumed
to be equal to one without loss of generality. Using the linear water-wave theory we consider
velocity potentials of the form

exp(—iwt)u*(z,y) coskz (exp(—iwt)u(z,y)cos kz)

for the lower (upper) fluid. Here w is unknown radian frequency of trapping mode, and the
wavenumber k along the z-axis should be taken so that the impermeability condition holds
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on the sidewalls. In what follows we suppose & to be prescribed, but its value is an arbitrary
positive number.

The pair {u,«*} must be a solution of the following problem

up, +uy, = kK*u* in W, (1)
_ um-f-uw:kzu in W, 0ufdn=0 on S, u,—vu=0 when y=1, (2)
uy, =uy, p"(uy —vu*) = p(u, —vu) when y =0. (3)

Here W(W™) denotes a cross-section of the region, occupied by the fluid of density p(p*),
v = w?[g is the spectral parameter to be determined along with u,u* (g is the acceleration

of gravity). For trapped-mode solutions the motion must decay at large distances, i.e. the
relations

u*, | Vu*|—0 as z2+y2—+.oo, and u, |Vu|—0 as |z|—> o0 (4)

must hold.

3.Perturbation method for spectral problem in the upper fluid

First, with the help of the Fourier transform one can eliminate »* from (1), (3) and (4). On
this way we arrive at the following boundary condition

euy = V[(1+¢e)Au—u] when y=0. (5)
Here | e .
(4)(e,0) = 7 [ Kofbe ~ ) uy(6,0) e

and K, is the Macdonald function. Thus, we have the boundary value problem (2), (5) with
the second condition (4) at infinity.

Since the parameter ¢ is assumed to be small, it is natural to seek eigenvalues and eigen-
functions in the form of expansions

v=vtenm+ev ..., u=u® e 42Dy, (6)

which is common in the perturbation theory (see e.g. Friedrichs, 1965). Substituting (6) into
(2) and (5), and equating the coefficients at the same degrees of ¢, one obtains an infinite
system of boundary value problems. The problem of the zero order is

W@ +u® =@ in W, 8u/6n=0 on § (M)
us)) _— l/ou(o) =0 when Y= 1, (8)
ol Au® — u(°)) =0 when y=0. (9)
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The first order problem has the form

u® +uld = Pu® in W, 8uM/dn=0 on S, (10)
usl) - vou®™ = 11u® when y= 1, (11)
vo(Au® — ) = u§°) — v Au® — 11 (Au® — 4©®) when y=0. (12)

The problem for «(™ (m = 2,3,...) can be easily written down.

In order to fix an arbitrary factor in the expansion for u, which should be found from the
system (7) - (9), (10) ~ (12) etc., it is convenient to use the linear condition (u(-,1); u(9(:, 1)) =
1, where (- ; -) is the scalar product in Lz(+00,~00). The last equality combined with the
following normalization condition {u(%(:,1); u(®(:, 1)) = 1, gives

W15 WO D) = (@, 1); kO 1) = =0, (13)

The problem (7) — (9) has a finite set of positive point eigenvalues {Vé+)}, because this
problem is another form of the problem on trapping modes above the cylinder immersed in the
homogeneous fluid (o* = p). ¥ v§*) is a positive non-degenerate eigenvalue for (7) — (9) and
ug(_)) is the corresponding eigenfunction, then (12) takes the form

AUl — ) = 0 4 WP 0u® /0y when y=o. (14)
The problem (10), (11), (14) is solvable under the orthogonality condition
" = 0% w0 0) + [T 0)5 (0u/8y)(, 0)) =,

which expresses u§+). Then uf,.l), can be found uniquely in view of (13). Thus, the terms in the
expansions (6) can be successively determined, what gives v(*) > 0 and u, to any necessary
accuracy when ¢ is small enough.

If v{”) = 0, then (9) trivially holds and (12) takes the form

u® = O Au® — D) when y=o0. N 1))

This boundary condition, complemented by (7) and by the homogeneous Neumann condition
on y = 1 (it follows from (8)), forms a spectral problem. It differs by the term Au® in (15)
from the problem on trapped modes above a cylinder immersed in a homogeneous fluid of finite
depth. '

4.The spectral problem for Vfo)

Following Ursell (1987) we seek ugo) in the form of a single layer Green potential
+00

u e, y) = (Vu)(z,y) = 1/x / u(€)g(z, y; €,0) dE,

00
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where u € Ly(—00,+00) and g(...) is Green’s function satisfying (10) and the homogeneous
Neumann condition on y = 1 and on y = 0 (with exception for z = £ in the last case). This
Green function is constructed by Ursell (1987). Since 8V u/dy = —u when y = 0, then (15)
yeilds

U(O) +00
p= 0T =" [ Ko — € + oo, £, 0)] ) (16)
—00

In the same way as in Kuznetsov (1993) one can show, that1]differs from the operator
2G with the kernel 2g(z, 0;¢,0) by an operator, whose norm exponentially decays as k — co.
On the other hand, Ursell (1987) proved that G has a finite set of positive point eigenvalues.
Hence, there is a finite set {V;EO)} of positive eigenvalues for T', when k is large. Applying the
same procedure as in § 3, we arrive at the eigenvalue expansion (9 = cufo) +e21/§°) +..., which
is positive for sufficiently small e. Then, w; = (gv(¥)}/? is the frequency of trapped mode of
internal waves on the interface.

It is easy to see that w;/w, = (¢/2)'/?, when ¢ is small enough and k is large enough. Here
w, i8 a trapping mode frequency for waves on the free surface of the following finite depth
channel. We have to topsyturvy the upper fluid layer with the cylinder and to supply it with
the rigid horizontal bottom.

5.Conclusion and discussion

Kuznetsov (1993) demonstrated that there exist trapping modes of internal waves when a
cylinder is immersed in the lower infinite depth layer. Here the same is shown to be true when
the upper layer contains a cylinder. For both positions of cylinder the relation w;/w, & (g/2)*/?
is valid, but with different meaning for w,. It should be reminded that in Kuznetsov (1993) w,
denotes the trapping mode frequency for waves on surface of the lower fluid in absence of the
upper layer. In § 4 the meaning of w, is quite unlike to the cited above.

The existence of trapping modes of both considered types can be demonstrated similarly
for any above mentioned cylinder’s position in a two-layer fluid of finite depth. The method
developed here can be also applied for finding trapping mode frequencies of internal waves in
the case, when a cylinder intersects the free surface of the upper layer. It is interesting to
note, that there are no trapping modes of surface waves, if the latter configuration satisfies
John’s condition. This follows from a result proved by Mclver (1991, Appendix A) on absence
of trapping modes in the homogeneous fluid in presence of such surface-piercing cylinder.
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DISCUSSION

Palm E.: In your proof ¢ is assumed small. Do you have any idea about how large ¢ may
be for your proof to be true?

Kuznetsov N.: For practically interesting case of fresh-salt water we have ¢ in the
interval from 0.2 to 0.4. These values are small enough for convergence of perturbation
expansion as it is known from other examples.

Evans D.V.: Does your proof hold for arbitrary (small) € or do you have to assume that
the expansion in € is convergent?

Kuznetsov N.: If a cylinder is immersed in the lower fluid, then the result can be
easily transformed to become a rigorous mathematical theorem. Only a formal asymptotic
expansion is obtained for the second case, when the upper fluid contains cylinder.
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