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1. INTRODUCTION

Various concepts using flexible membrane such as plastic and fabric have been proposed
for a variety of ocean/coastal developments. In particular, the longevity of membrane
fabrics and PVCs has significantly been improved during the past decade (Broderick et
al., 1993), making them a viable engineering material for future coastal/ocean applications.
For example, the flexible membrane can be used as a portable temporary breakwater for
strategic amphibious military operation or for the protection of sophisticated offshore and
coastal operations, and as a containment boom for floating oil slicks and other surface
contaminants. It has also been suggested that flexible membranes, being lightweight,
inexpensive, easily and quickly handled, and reusable, be used for submerged breakwaters
(Ohyama et al., 1989), transportation of freight, deepwater waste disposal, and submerged
oil storage tank.

In this paper, the wave interaction with flexible membrane hinged at the seabed and the
mean free surface is considered. It is assumed that the tensioned membrane is unstretchable
- and free to move in the transverse direction. The tension, for example, can be provided
by a taut-moored small buoy which little influences the wave field. For simplicity, a two-
dimensional mathematical model is used and linear theory is adopted. The membrane
dynamics is modeled as that of the tensioned string, and both analytic and numerical
solutions are obtained. A boundary element method based on a discrete membrane model
and Rankine source distribution is developed for the numerical solutions. For the analytic
solution, a continuous membrane model as well as eigenfunction expansion of the velocity
potential is used. Thompson et al. (1992) studied the performance of a similar wave
barrier, in which they used arbitrary constant added mass and wave damping of the flexible
membrane, which should in principle depend on various modes and wave frequency.

2. ANALYTIC SOLUTIONS

For analysis, the Cartesian coordinate system with the origin on the mean free surface and
the z axis positive upward is used. Assuming ideal fluid and harmonic motion of frequency
w, the velocity potential can be written as ®(z, z,t) = Re[¢(z, z)e~**]. Then, the linear
complex disturbance velocity potentials, ¢; and ¢, for two fluid domains 1 and 2 (see
Fig.1) divided by a membrane have the following forms:

b1 = do = Beosh k(z +h)e™** + Z Cn COS Kn(2 + h)e™" (1)

n=1
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$2 = acosh k(z + h)e'*® + Z dp cos kp(z + h)e™ " n" 2)

n=1

where ¢, = (—igA/w)(cosh k(z + h)/ cosh kh)e'** is the velocity potential of an incident
wave of amplitude A with g and h being the gravitational acceleration and water depth,
respectively. The wavenumbers k and &, can be determined from

w? = kgtanhkh , —w?=rkpgtank,.h (3)

The above velocity potentials satisfy all the boundary conditions except on the membrane
surface, where the kinematic and dynamic boundary conditions are given by

O(p1 + ¢o) O

Oz - oz —wg (4)
d? )
TN =g, ) (5)

in which A = wy/m/T with T and m being the membrane tension and mass per unit
length, respectively, p is the fluid density, and the harmonic membrane motion =(z,t) =
Re[¢(z)e*?]. The solution of the above dynamic equation is given by a series of the
eigenfunctions of the corresponding homogeneous boundary value problem as follows:

)= Af_"v sin An(z + h) (6)
By =20 [ (4 — 41)sindn(z + h)dz (7)
n — h T h 2 1 n

where )\, = nw/h. Using the orthogonality of the wave eigenfunctions and the kinematic
and dynamic membrane boundary conditions, the unknowns «, 8, ¢,, and d,, of (1) and
(2) can be determined. Then, the membrane motion can be determined from (6) and (7).
Compared to rigid-body hydrodynamics, the body boundary condition is not known a
priori in this case, thus the membrane motions and velocity potentials are solved together.

3. NUMERICAL METHODS

A boundary integral equation method based on the distribution of simple sources is de-
veloped for our numerical solutions. Using basic singularities over the entire domain, the
method can be used for arbitrary bottom topography and can easily be extended to the
nonlinear time-domain problem.

The integral equations for the unknown potentials ¢, ¢2, and membrane displacements £
are given by

oG oG .
Cod1 + (_877: - IX’G)¢1dF + / (5; - ZkG)¢1dr
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oG oG .
Cor+t [ (G = KG)pdr + i (3 —i*G)pdr

vf ,,_dp+/ ¢2 dF /szde‘ 0 (9)

where G = In+/(z — 2')? + (2 — 2')? with (2',2') being the source point, and K = w?/qg.
All the boundary conditions of ¢; and ¢, including the kinematic membrane boundary
codition have been used in (8) and (9). It is assumed that the truncation boundary I, is
located far enough from the membrane so that the local (evanescent) wave effects may be
neglected. In this paper, the potential is assumed to be constant on each segment (C = ).

On the other hand, the discrete form of the membrane equation of motion for j-th element
is given by

pio(@aj — d1;)l; Tjgéj_l——,.f’—':ﬁ + Tin (gﬁ}:n &) = mjue, (10)
J j+1

where 7" = bi;’ii In the above integral equations, ¢; and ¢, are coupled through the
unknown membrane displacement ¢, hence cannot be solved independently. Two different
methods can be used to solve the above integral equation. First, the two integral equations
can be solved independently after assuming initial values of ¢, and then new ¢ values can
be obtained from (10) using the computed potentials. This procedure can be repeated
until a specified convergence criterion is reached. Second, (8), (9), and (10) can be solved
together to obtain ¢1, ¢,, and £ at the same time. The size of the matrix of the first method
is in general much smaller than that of the second method, thus the iteration method is
expected to be more efficient than the whole matrix method if convergence can be reached
quickly.

4. DISCUSSION

For illustration, linear wave interaction with a flexible membrane wave barrier of mass
density=>5.1 kg/m? is considered. The reflection coefficients of the membrane wave barrier
hinged at both ends are plotted in Figure 2 as functions of nondimensional wavenumber
kh with varying the membrane tension. Good agreement is observed between numerical
and analytic solutions. It is seen that the membrane wave barrier can function as a very
effective breakwater in broad wave frequency range when applying a tension greater than
10kN. More than 10kN of tension can easily be provided by a long cylindrical buoy of
radius less than 1m. Figure 3 shows the profile of the nondimensional membrane response
amplitude (per unit incident wave amplitude) for various kh values. We observe that
despite appreciable membrane motions, little waves are generated in the lee side.
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DISCUSSION

Kuznetsov N.: 1) Was the uniqueness studied for your boundary value problem?
2) What is the reason for using the Rankine source instead of , e.g., the wave source,
which allows to eliminate all integrals except for that over I',,?

Kim M.H.: 1) As far as I know, the solution is unique except at discrete irregular
frequencies.

2) Although it is less efficient, the Rankine-source-based method can be used for arbitrary
bottom geometry and it can also straightforwardly be extended to nonlinear time domain
problem.

Sturova I.V.: Did you use your numerical scheme for the evaluation of the internal soli-
tary wave moving with a constant speed? At the Lavrentyev Institute of Hydrodynamics
(Russia, Novosibirsk) there are many theoretical and experimental results for this problem.
I think it will be very interesting to make the comparison of your numerical results and
the results obtained at our Institute.

Kim M.H.: Thank you for your comments. To answer to your first question, since
we use a fully nonlinear numerical scheme for an initial-value problem, any nonlinear or
linear phenomena will be obtained in the present method. We would also like to make
comparisons with the theoretical and experimental results obtained by your Institute, in
the future. *

Evans D.V.: [ have a comment rather than a question. If you allow a gap above the top of

the flexible membrane, you permit the possibility of the wave created by the motion of the
membrane cancelling the part of the incident wave passing through the gap. This theory
was developed by Evans and Linton and published in Applied Ocean Research in about
1987, where the theory for a buoyant tethered circular cylinder predicted low transmission
over a wide period range. Experiments confirmed the results. Further work on a higed
vertical plate was presented at the OMAE conference in Houston in 1990.
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