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Introduction

Recently several numerical methods have been developed for the 3-D unsteady problem of.a ship
advancing in waves, e.g. the Green-function method [1], the free-surface Rankine panel method [2],
and the combined boundary-integral equation method [3]. Notwithstanding fairly good numerical
results, a number of moot questions remain in those methods, such as the satisfaction of the radiation
condition and the treatment of the so-called line-integral term.

These are investigated theoretically in the present paper, which is based on Green'’s second identity
with the Green function satisfying the classical linearized free-surface condition. Since the effects of
the double-body flow are taken into account in the formulation, the resultant integral equation for the
velocity potential includes integrals over the free surface. However, the use of Gauss’ theorem proves
that there exists no water-line integral and the integrals over the free surface can be confined to a
relatively smaller region near the ship.

Also shown with the proposed free-surface condition is that the Timman-Newman relation must
be satisfied without ambiguity concerning the line-integral term, and the same is true of the Haskind-
Newman relation, in which the Kochin function is newly defined to contain the free-surface integral.

Investigations proceed to the energy and momentum conservation principles. The outcome is that
the energy flux through the free surface is exactly zero, while the momentum flux is not zero but
negligible. This can be regarded as a proof for the appropriateness of the proposed free surface
condition and the solution method.

The free-surface condition

We consider the free-surface condition first, because the final result is slightly different from existing
ones in published papers so far.

A ship is advancing at constant forward speed U along the positive z-axis.and oscillating in waves
with encounter frequency w. The z-axis is positive downward, and the fluid is assumed ideal with
irrotational motion.

When the total velocity potential is decomposed into the double-body flow @, the steady wave flow
&, and the unsteady wave flow ¢, the unsteady pressure (P,) and wave elevation (¢u) linear in ¢ can
be given from Bernoulli’s equation, in the form
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Here p is the fluid density and g is the acceleration of gravity.
The unsteady free surface condition must be given by the zero substantial derivative of the unsteady
pressure on the unsteady wave surface. Therefore we write
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Using Taylor-series expansion of the velocity potential and its derivatives about the undisturbed
free surface z = 0 and neglecting higher-order terms, we have
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Since ® is the double-body flow, ® satisfies the rigid-wall boundary condition on z = 0, and thus V
means only the horizontal gradient.

With expressions ¢ = R[¢(z,y,2) exp(iwt)], ® = Uds = U(—z + xs), the above free-surface
condition can be expressed as

+V8V4) =0 onz=0 (4)
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where K = w?/g, 7 = Uw/g, Ko = g/U>.

It is easy to confirm in (5) that the classical free-surface condition is recovered if the steady
perturbation potential xs is omitted. Meticulously speaking, corresponding free-surface conditions
used in the Rankine panel method include one additional term which comes from the substantial
derivative of the steady hydrodynamic pressure. But it should be emphasized that, as will be made
clear, the present condition (5) provides rational results in that the energy-conservation principle is
exactly satisfied and the Timman-Newman and Haskind-Newman relations hold.

The Integral equation

We start with Green’s theorem:
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Here C is a constant and Sp, Sp, Se denote the body surface, the free surface, and the infinite
rediation surface, respectively. G(z,y,2;€,7,() is the 3-D translating and oscillating Green function
satisfying the classical free-surface condition. We note that the integral in (6) must be performed with
respect to the integration point (£,9,().

Let us first consider the integral over the free surface. Although the transformation is a little
complicated, if Gauss’ theorem is utilized effectively after substituting (5) for 0¢/0n and the classical
. free-surface condition for 8G/dn, the following relation can be obtained:
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Here the body boundary condition for the double-body flow is given by
%=0, ?—Z@-=nz, ny dl = dn on Cpg (8)
on on

100




Thus we can see that the so-called line-integral term along the periphery of the water-plane area Cpg
is cancelled out by the inclusion of the steady perturbation potential xg, but instead the integral over
the free surface does not vanish. However, this integral is expected to decay rapidly with increasing
distance from the body, because it contains the spatial derivatives of xs, and xg itself is O(1/7?) in the
3-D problem. Moreover in the present case, there is no ambiguity concerning the radiation condition;
in fact, since the Green function satisfies the radiation condition, we can easily confirm that
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where the first case applies to the radiation potentials and the second to the diffraction potential

¢D = o + 7, With ¢o and @7 the incident-wave and scattering potentials respectively. Namely, (9)
cancels out exactly the first term along C, appearing in (7).

In summary, a new integral equation can be expressed as follows:
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A key to the success in solving the above integral equation is how efficiently and accurately the
Green function can be computed. The steepest-descent method developed by Iwashita & Ohkusu [1]
may be the most reliable, and I have already succeeded partly in accelerating the computations
by modifying their method. At present, the development of computer program is in progress, and
numerical results based on (10) will be shown in the presentation at the Workshop.

Relations among hydrodynamic forces

The Timman-Newman and Haskind-Newman relations were originally proved under the classical free-
surface condition, but due to the neglect of the water-line integral, their proofs are not exact. Presented
here is the exact form of the Timman-Newman and Haskind-Newman relations when the double-body
flow is included in the free surface condition.

First let us consider the ‘transfer’ function of the radiation force in the i-th direction due to the
j-th mode of motion, which can be written in the form

U : U
Tt = P//SB{%' + {JV¢SV<PJ'} nidS = P//SB Pj ("i = Em") d§ (11)

Here Tuck’s theorem has been used, resulting in the use of the so-called m-term. It should be noted
that the speed-dependent hydrodynamic restoring force, which may experimentally be analyzed as
part of the added mass, is not included in (11).

After introduction of the reverse-flow radiation potential 4; satisfying the following body-boundary

condition
o _, U
5 =M T M on SB, (12)
we consider the equation: ” 5
+ T = ¥ _ _f-l.
T} - T; = p//SB(% o — i) dS (13)
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By virtue of Green’s theorem, the above integral can be transformed into the integrals over the
free surface and control surface at a large distance from the body. Then using the same technique as
in deriving the integral equation (10), we can prove the relation:

T} =Ty (14)

It must be emphasized that there are no ambiguities in the proof (of course no water-line integral).
We can see from (14) that no linear term in U exists in the case of i = j. A couple of examples of the
experiments supporting this relation will be shown in the presentation.

Similar transformation can be used to show the Haskind-Newman relation. In this case, however,
we should note that the incident-wave potential ¢y satisfies the classical free-surface condition as in
the Green function, and the diffraction potential pp = ¢ + @7 (not ¢; itself) satisfies the proposed
free surface condition (5).

After somewhat lengthy reduction using Gauss’ theorem, we can show the final result:

Bj = pga_— Hy (ko, f + ) (15)
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Here a, wo, ko denote the amplitude, circular frequency, and wavenumber of the incident wave respec-
tively, and 8 the angle of incidence relative to the positive z-axis.

(15) is formally idential to the relation originally proved with the classical free-surface condition.
However the definition of the Kochin function is markedly different; the present Kochin function, which
is of course given from the asymptotic analysis of (10) with C = 1, does not include the water-line
integral but integrals over the free surface instead.

Principles of energy and momentum conservation

Because of the paucity of space, we can not describe the details here, but the outcome of the energy-
conservation analysis with the modified free-surface condition (5) is that there is no energy flux through
the free surface and thus the rate of work done by the body must coincide with the rate of energy flux
across the control surface far from the ship.

However in the analysis of the rate of change of momentum flux, we have found that the momentum
flux through the free surface is not zero and the remaining free-surface integral includes only the second
derivations of the steady perturbation potential which decay very rapidly in the order of O(1/r*) with
increasing distance from the body.

Except for this term, we can say that the pressure integral over the wetted body surface up to the
unsteady free surface 2 = (, must be equal to the rate of momentum flux across the control surface
at infinity. In other words, we can apply Maruo’s formula to the prediction of the added resistance
in waves, with the Kochin function newly defined as in (16) taking account of the effects of steady
disturbance on the free surface. :
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DISCUSSION

Eatock Taylor. R.: Can you comment on the relation between your integral equation
and the one published some years ago by Palm and Grue, and the consequences such as
Timmian-Newman relations?

Kashiwagi M.: You must be saying the paper published in J.F.M. Vol.227 in 1991.
Their paper is based on the small speed assumption, and thus the quadratic terms in U
are discarded. I believe that the present paper is an extension to the general forward-speed
problem.

Yasukawa. H.: You mentioned that the term which comes from the substantial derivative

of the steady hydrodynamic pressure can be neglected. But I think that this way is
inconsistent. Also I would like to have a comment as your free surface condition is about
the same as our condition based on double body flow.

Kashiwagi M.: A point in the present paper is that the validity of the free-surface
condition should be judged by whether or not the energy flux through the free surface is
zero. In that sense, the fact that your free surface condition is different from the present
one implies that the energy flux across the free surface is not zero in your case.

Bingham. H.: You have panels distributed on the 2 = 0 plane, which means that the
source and field points will coincide on the free-surface. I think that there will be another
(in addition to % + % ) singularity in your Green function in this situation. How do you
propose to handle this?

Kashiwagi M.: I didn’t pay a special care to that difficulty, which might be a reason
of some eccentricities I found in numerical results. When both of the field and source
points are on the same panel, what I did is that firstly the local coordinate system was
transformed into the polar coordinate system with the origin taken at the field point, and
then the Gauss-Legendre quadrature was employed. I guess the analytical investigation
on the singularity might do the trick.

Newman. J.N.: Expanding on Dr. Bingham’s question, the Green function for U = 0
has the form G =1/R+1/R'+ 2K log(z+ ( + R') as R' — 0. When collocating at points
on the free surface (z = { = 0), care is required particularly on the principal diagonal
(self-influence of the panel). We use analytic integration over the panel in this case, as
described in Newman and Sclavounos, BOSS ’88, Trondheim. It is not obvious to me how
this will be manifested when U > 0, but it seems likely to be worse rather than better!

Kashiwagi M.: Thank you for your information on the singularity, which is surely useful
in checking the program. Regarding the numerical method used for the self—mﬁuence term
of the panel, please see the reply to Dr.Bingham’s question.

Yue D.K.P.: I just want to point out that in view of the second derivative of the Green
function on the free surface which has a log-like singularity (in addition to the Cauchy-like
Rankine singularity), special care must be needed in evaluating the free-surface kennel in
your new integral equation. Can you explain how you treat that in your program?

103




Kashiwagi M.: As I replied to Dr.Bingham’s question, I used the numerical integration
with the coordinate transformation when both the field and source points are on the same
panel. I will check the program with all of your indications taken into account.
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