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Introduction

A time-domain finite element formulation is being developed for fully non-linear wave body
interactions. As is well known, numerical analysis of such interactions raises a number of awkward
problems. How best does one propagate the incident wave past the structure? How can the
numerical domain be limited while still permitting the propagation of waves far downstream? How
should the singularity at the waterline of a floating body be resolved? To provide the groundwork
for dealing with such questions we are investigating the analytical solution for the wave maker.
Based on a perturbation approach, we are generating numerical results which will be compared with
those from the finite element formulation.

The linear analytical solution may be compared with that of Kennard (1949). His final form of
solution differs from ours, and he did not give any numerical results. These were provided,
however, by Dommermuth et al. (1988), based on an extension of Kennard’s analysis for a finite
length tank. Their results were obtained for a complex motion of the wave maker, designed to
produce a very large wave (in reality a breaking wave) at a point far downstream. in the following
our linear analysis is summarised, and some results given. These will be compared with resuits from
the non-linear finite element formulation.

Analysis

It is useful, first, to write the formulation for the general case of a three dimensional body
undergoing arbitrary motions at the free surface. We use a Cartesian coordinate system (x,y,z)
located in the mean free surface, with z pointing upwards. Points in the fluid are denoted p, and
the underwater surface is S; . We consider the transient problem represented by a velocity potential
@(p,t), satisfying the linear free surface condition, a condition on the seabed and a kinematic
condition on the moving solid boundary. The initial conditions are taken as
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The motion of the solid boundary S; is taken as v(t/fip), so that the boundary condition on S, is
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where n is the normal at p. The general solution is then

olp.t)= J Viw)plp,w)e™dw (3)

where V(w/ is the Fourier transform of v(t). ¢(p,w) may be subdivided as follows

plp,w)=wlp) + lplp,w)-pip,~)] (4)

where ¢ is used to denote the value of ¢ as w —>co. Itis useful also to define
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x(p,t)=I [plp,w)-0(p, o )le™dw

=00

(5)

61




Use of these in equation (2) leads to

o(p,ti=glp) vit) + Jx(p,t-r)v(r)dr (6)

The first term corresponds to the instantaneous effect of v(t), and the second term is the memory
effect.

On the basis that v(t) = O, t<0, and that the system is causal, the lower and upper limits may be
replaced by O and ¢ respectively. On the free surface, ¢ and x satisfy the following conditions for
t> 0.
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The initial conditions on x are
xp,0) =0 (9)
Aip,0) = g2 - (10)
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The wave maker

We now consider a wave maker in water of depth A, moving sinusoidélly at frequency w. For
simplicity in the resulting expressions, the motions are such that

cosh k,(z+h)
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where w? = kg tanhk,h. The solutions may be obtained as
wix,z2) =Y C,cosa,(z+he™* (13)
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where g% = kg tanhkh. This leads to the wave elevation {ix,t) which can be expressed in the form

2k,A, ‘[ COskx cosft - cosk,x coswt

X,t) = A, sink,x coswt +
a 0 oX 7 PEa koz

dk {15)

One finds that as ¢ > this provides the steady state solution, with amplitude A, = w/lgky):

{,=A, coslk,x - wt) (16)

One also finds that as x> the disturbance in the far field tends to zero as required.
Asymptotic analysis

Miles (1962) has used an asymptotic analysis to show that, away from the wavemaker, the
amplitude ratio A/A, near the wave front may be expressed in terms of Fresnel sine and cosine
integrals (The result is also given by Mei (1983)). Here A is the local wave amplitude prior to
achievement of the steady state, so that Aft) is the envelope process. This analysis is for deep
water, and shows that at the wave front given by x = ¢ t, where ¢, is the group velocity, the local
amplitude is half the steady state amplitude. The time interval between two successive wave crests
coinciding with a peak in the envelope process is twice the wave period.

Results

Figure 1 shows results for a wave front corresponding to a wave of unit amplitude. The envelope
predicted by Miles’ theory is shown alongside the result based on equation 15, 10.4 seconds after
starting the wave maker at a frequency of 6.48 rad/s. Figure 2 shows the corresponding
comparison of the time history of wave elevation, at a fixed point 15m in front of the wave maker.
Figure 3 shows the evolution of the front, each wave profile in the figure being separated from its
neighbour by 1/8 of the wave period.

These and further results from the perturbation analysis will be used in the validation and
interpretation of results from the finite element formulation (Wu and Eatock Taylor,1994).
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Figure 1 Wave elevation 10.4s after starting wavemaker
compared with envelope from theory of Miles (1962)
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Figure 2 Time history of elevation 15m in front of wavemaker
compared witn envelope from theory of Miles (1962)

Figure 3 Evolution of the wave front
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DISCUSSION

Clement A.: Did you compare the finite element approach to the boundary element
method both applied to this problem, in term of computation burden (CPU consumption
and data stroge volume), in the perspective of extension to 3D nonlinear problems?

Eatock Taylor R.: We have thought about this before embarking on this project, though
I cannot give you explicit comparisons. Among reasons for our reinsisting the finite element
approach are the following. 1) Concern about behavior at (and also near) the intersection
of the body with the free surface. 2) The scope for relaxing the assumption of inviscid flow.
3) The possibility of applying novel adaptive mesh techniques and solution algorithms in
the finite element formulation.

Tulin M.: 1) The front of the groups will inevitably be modified by non-linear effects,
leading to a propagating wave groups there, governed by the cubic Schrédinger evolution
equation. This has been well studied by Prof.Choi (Seoul Univ.) and presented at ISOPE
’92 in San Francisco. He showed good agreement with experiments. 2) In our LONGTANK
exact numerical simulations we eventually find the same effects, whereas early in the life
of the wave train we find a large wave at the front, which always breaks before the waves
behind. I hope these comments will be of use.

Eatock Taylor R.: We haven’t yet produced results from our non-linear finite element
method for very long wave trains, but we expect to do so. We shall bear your comments
in mind. :

Cao Y.: In our nonlinear calculations of waves generated by a wave maker starting from
rest using an explicit time stepping scheme, at the first time instant, we usually have to
solve a boundary value problem for the flow with the exact non-penetration condition on
the wave maker and @ = 0 on the undisturbed free surface. This boundary value problem
is not well defined and the solution to the BVP is singular at the intersection point of the
wave maker and the free surface. This will cause the time stepping to stop if no “special”
treatment is applied. The “special” treatments we use include 1) not to solve the BVP at
the first time instant exactly so we do not get the infinite flow velocity at the intersection
point; 2) the start-up error is scaled down by a very slow start-up of the wave maker or
by using a very small time step size. With the use of a stable time stepping scheme, the
start-up error would then not be likely to cause the simulation to break down. However,
these treatments increase the computational cost.

I think your linear analytic solution for small time may be used for the first time instant,
thus avoiding the start-up difficulty without using the “special” treatments. In your ana-
lytic solution, is the flow velocity at the intersection point finite for a general smooth start-
up of the wave maker? What happens to the flow velocity at the intersection point if the
wave maker has a sudden start-up? '

Eatock Taylor R.: The order of the singularity depends on the movement of the wave-
maker. For a sudden starup, similar to the impulse response in our analytical solution, the
complex potential has a zInz behaviour near the intersection. For a general smooth start-
up, when the wave maker has small acceleration relative to gravity, the local behavior of
the complex potential can be shown to be of the form z%Inz. Regardless of any singularity
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in the vertical velocity at the intersection, there is no singularity in the wave elevation.
In our finite element formulation, where we explicity impose both free surface and body
surface conditions at the intersection point on the wavemaker, no special treatment is re-
quired. It is found that the wave elevation at the wavemaker obtained from the linearised
analytical solution and from the non-linear numerical solution are in excellent agreement.
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