A relation between the three-dimensional and the two-dimensional
Green functions of the Neumann-Kelvin Problem

Y. DOUTRELEAU' J-M. QUENEZ!

1 Introduction

We are concerned with the linearized wave resistance problem (also called Neumann-Kelvin problem),
i.e., the perturbation of a uniform flow by a fixed rigid body assumed immersed or not. This problem
calls for a preliminary study of the associated Green function, that is the solution of the problem of
an immersed source in the same flow. It has already proved to be of great use for the two-dimensional
problem.

Indeed, in the two-dimensional case, the Green function is regular except near the source. It can be
used to find an integral representation formula (of the two-dimensional Neumann-Kelvin solution) that
enables us to set the problem in a bounded domain. By this method, the solution can be theoretically
studied and numerically computed.

In the three-dimensional case, the study is not so easily performed. The Green function is well-
known (see e.g.[1]). Some of its properties have been studied (see e.g.[2]). It has been shown that it
is not regular, so that all the results deduced in the two-dimensional case, have not been obtained by
our method.

In this paper, we state that there is a relation between the Green functions of the three-dimensional
and the two-dimensional problems: they are related through the Radon transform.

2 Application of the Radon transform to the Green function of
the three-dimensional problem

2.1 The Green functions

We first describe the 3D case. (x,y) are the horizontal coordinates of point P and z is the vertical

one. The perfect fluid domain is located in the half-space {z < 0}. Its boundary is located at z = 0.

The flow is parallel to the x-axis and its velocity is V5. We set v = ;%. The Green function G3(M, P)
0

satisfies problem (P3):

(a) ApG3(M, P) = 6m(P) in z <0,
’ (b) (824 vd,)G¥(M,P) = 0 on z =0,
(P) { () lim &,GYM,P) =

(d)  VpGYM,P) = O(—=t=) z— +00,Y(y,2),

Vo

where 8y7(P) denotes the Dirac measure at point M. Since the problem is invariant through any
horizontal translation, we can reduce the study to the case of a source located at point M = (0,0, zas).
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: 2§n the 2D case. (s, z) are the coordinates of point P. The Green function G%(M, P) satisfies problem
P

(a) ApGEi(M, P) ém(P) inz<0,

| (®) (B +v0:)GYM,P) = 0 onz=0,
(P) { (¢ Jim 0.Gi(M,P) = 0,
(d)  lim VpG3(M,P) = 0 inz<0.

G?(M.P)is the calm upstream solution. If we replace ligl by lim in equation (d), G}(M, P) is the

S——00

calm downstream solution. From now on. we will denote problem P2, _ by P?,. We now introduce
cosie !

the Radon transform.

2.2 The Radon transform

For all f(z,y), Rf is the integral of f over D(s, ). D(s.8) is the straight line parallel to and positively
oriented by the vector (—ssin§.scos ) and whose distance from the origin is | s | .

y H(s,0)

NV

Definition 1 oo
(1) (Rzyf)(s.8) =/ f(scos@ —tsin@,ssinf + t cos §)dt.

2.3 Relation between the Green functions

Theorem 1
(Rr.yai(xs y,:,zM))(s,ﬂ) = GZ 9(39‘313M)s

where G2 4 is the calm upstream solution of P}, when 8 €]— 5, 5[ and the calm downstream one when

6 €l3. 51

Let us notice that —% corresponds to a two-dimensional flow whose velocity is Vj cos @, that is the

projection of the three-dimensional flow onto the plane normal to the vector (- sin#é, cos ).

3 Sketch of the proof of the theorem

3.1 Properties of the Radon transform

Let us recall some basic properties of the Radon transform. All the details can be found in [3]. There
is a relation between the Radon transform and the Fourier transform; if we denote the n-dimensional
Fourier transform by the following formula.

Vo e R™, (Fuf)(v) = (z—i); e & ()

we obrain:

(2) Y(p.8) € R x [0,27]), (Foyf)pcosb,psind) = \/_(fs(Rx,yf)(s ,0))(p).




This formula (2) can allow us to prove that the Radon transform is 1 to 1.

We now gather some formulas we will use to prove the theorem. Using the definition of the Radon
transform (1), we obtain:

(3) Rzy(0zf)(s,8) = cos00,(Razy £)(3,6) and R (8, f)(s,8) = sin 005(Rz,y f)(s,0).
Reiterating, we have:

(4) Ray(Bayf)(3,6) = 8}(Rsy f)(5,6) and Rey(92£)(s,6) = cos? 003 (R f)(s,6).
We also obtain:

(5) Vg € N, Ry (97 £)(s,60) = 0} (Ray f)(s,6),

(6) Rey(6(z =0,y = 0,2 = 2p))(5,0) = 8(s = 0,2 = 2p7).

3.2 Application

Here, we state that we can transform the three-dimensional problem into the two-dimensional one.
In a first step, we try to apply the Radon transform to the equations of P2. But we don’t see how
the upstream condition, i.e. equation (d), can be easily transformed. This leads us to only consider
the first three equations of the three-dimensional problem which are however easily transformed into
the first three equations of the two-dimensional problem. In a second step, we verify that the last
equation (d) of the two-dimensional problem is also satisfied when the calm upstream condition (d)
of P2 is satisfied.

We consider problem (P3), which consists in the same equations as P3 save equation (d). G3(M, P)

is a solution of (P3): .
(P2) {(a), (b), (c).

If we take the Radon transform of G3(M,P) with respect to (z,y), we obtain, thanks to formulas
(4),(5)(6), Y8 € [0,27], Ry ,(G3(M, P))(s,8) is solution of P2 o 'Pza is the following problem:

(a) ApG? ¢(M, P) = dm(P) in(z<0)
(P2,) { (b) (cos?0d? +v 3.)G? o(M,P) = 0 on (z =0)
1o lim_0.G2,(M, P) = o

We recall that (s,z) are the coordinates of point P. Problem 'P29 consists in equations of P2 v save
equation (d). We know its solutions that we denote by Gg'g(M , P). We have obtained:

Lemma 1 ) )
Rz,y(G,?j(:c, y,z,zM))(s, 8) = G’ﬁ,g(s, Z,ZM).

The Fourier transform with respect to s of G? V.0 ist

= elél(z+2ps) e—léllz—=zprl
Fo (G2ols,2om)) (6) = —=PV. (S50 + =5570)
elélz+zm)
™ B\ E

7, (m(a(o) — a0+ w))ezc(fﬁ)) (€)-

By using (2), (7) and Lemma 1, we obtain F;, (G’f’j) . By 2-dimensional inverse Fourier transform,

this formula gives an expression of G2, determined provided the function a(f) is fixed V8 € [0,27] —

551

In a second step, we determine this function a(f) so that G3 satisfies equation (d) of problem
P3. In fact, we only have to study the asymptotic behaviour of G , by means of the stationary phase
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method. It follows that a(d) = _,-\/ge:";‘;%’a for 0 €] - 2,%[ and a(f) = i\@eﬁ%‘z for 6 €)%, 35 [.We
find that the Green function G3(M, P), solution of P3 is:

3 = & L - h
G,,(l?, y,stM) - (\/x2+y2+(z+zM)2 \/x’+y2+(z—zM)2 )

+ (z+2m)(1+¢%) .
4L () e ) g
G"* -
— dr o ((sa) (R HVIFE (24ty)) gy
27 =00

Besides. Ry (G3(z,y,2,2m))(s,8) also satisfies equation (d) of PZ,, that is the calm upstream con-
dition or the calm downstream one. Indeed, we verify that a(f) is the same as the one directly given
by solving problem ng We obtain the theorem given in section 2, i.e.:

(Rl‘nyi(zv Y,z ZM))(S, 0) = G?J’g(S, z, ZM).

Let us notice that this result shows the equations (d) of P2 and 'Pze are related through the Radon
transform, which is not obvious by a direct computation.

Conclusion

Our final purpose is actually to study how the wave resistance depends on the flow velocity, and
to determine the local extrema of this function. Our approach is to extend the problem to complex
values of the flow velocity. Each maximum then appears as the trace of a singularity of this extended
problem. A value of the velocity for which a singularity occurs is called a resonance.

In the two-dimensional Neumann-Kelvin problem, the existence of resonances has been obtained
(see e.g. [4]). The method employed is based on a property of G2. Equation (7) gives that G2
consists in a Green function of scattered type (i.e. a function that behaves as outgoing plane waves
at infinity) plus a plane wave. It is shown in [4] that such a decomposition enables one to decompose
the solution of the Neumann-Kelvin problem into a solution of scattered type and a plane wave. This
decomposition leads to the existence of the resonances.

Consider now equation (8). It shows that the same kind of decomposition holds. Although the
scattered type function and the plane waves consist in a sum depending upon t = tan#, we hope to
obtain the same decomposition for the solution of the three-dimensional Neumann-Kelvin problem
and finally the existence of resonances.
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DISCUSSION

Yue. D.K.P.: Could you comment on the practical diffculty you may have near § = £%7?
It should be noted that physically nothing special happens at § = 7.

Doutreleau Y.. The point is that for § = £7, the free surface condition in the 2D
problem degenerates, because there is no more 2nd order derivative with respect to the
horizontal coordinate in it. So the Green function obtained is completely different and it
must be equal to the Rankine source. However, I'm not sure that when 6 goes to § = +7,
the 2D Green function might tend to the Rankine source in a distributional way.

Newman N.: Is it possible to find new algorithms more suitable for computations using
these transforms?

Doutreleau Y.: I can’t be either affirmative in negative, because I didn’t investigate
this question. But what is sure is that the invese Radon Transform that needs to make
two Founier transforms and then to evaluate on integral must be complicate. Notice that
it would be very surprising if it was easy to do it.
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