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The first formulation of a time-domain Green function of unsteady free-surface hydrodynamics seems to
appear in Brard (1948) in the case of infinite water depth. Finkelstein, in 1957, gave the expressions for
both the finite and infinite water depth, in two and three dimensions. Since that time, a lot of
alternative formulations have been developed in order to improve the efficiency of the computation of
this function in the infinite water depth case. (see e.g:Newman (1985), Liapis (1986), King (1987) ).
Further methods were proposed to avoid in-line calculations of this function in time-domain seakeeping
computations: the tabulation of the function (Ferrant 1988) and the identification of the function
(Clément 1991-1992). Thus, owing to these studies, the time-domain modelization of the seekeeping
problem has became a valuable alternative to the traditional frequency domain approach, at least when
the water depth may be considered to be infinite.

When this hypothesis does not hold, one must use the finite depth time-domain Green function instead
of the previous one, and this function is far more difficult to evaluate numerically. Only a few results
have been published about practical methods and algorithms for its computation (Newman 1990). So we
began last year to study this problem , and we present here the very first results we have obtained for
the small time range which is evidently the easiest part of the whole job.

THE MEMORY PART OF THE GREEN FUNCTION,

We are concerned here with the potential generated in M(X,Y,Z) at time T by a source of unit

impulsive strength 8(0) located at M’"(X’,Y’,Z’). This Green function is the sum of an impulsive term,
which will not be investigated here due to its relative simplicity, and a memory part given by:

sin(T‘«]K tanh K )
5 cosh K(Y + Decosh K(Y' + 1)J o (KR)dK
cosh® K +/tanh K 6h)

Gh (M, M",T) = j;\l’i

R= -\/(X -X ')2 +(Z - Z')2 is the horizontal distance between the points, and T is the time since the
impulsive birth of the unit strength source.

Distances are nondimensionalized with respect to the depth A; thus we have: -1<Y <0, and
-1<Y’<0. Let us recall here the expression of the infinite depth time domain Green function:

Go.(M,M",T)= J';\/E sin(TVEK )exp[K(Y +Y")]do (KR)IK @)

the evaluation of which will be performed by a bilinear interpolation process in a precomputed table,
(see Ferrant 1988) . Given the source point M’(X’,Y’,Z’) and the field point M(X,Y,Z) we define the
following points:
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M{(X',-Y",Z")
M5(X',-2-Y",Z")
M5(X',~4-Y",Z")
M\(X,Y,Z)

{MZ (X,~2-Y,2)

M 1X',Y.,Z)

image of the source point about the free surface Y = 0

image of the source point about the bottom ¥ = —

image of the source point about the image of the free surface Y = -2

image of the field point about the free surface ¥ =0
image of the field point about the bottom Y = —

source point

=Y +Y’
M1(X,-Y.,Z) Yo=-(Y’'-Y +2)
)X Y3=-(Y-Y'+2)
MXY.2) Yi=—(Y+Y'+4)
field point

The four angles 6y,69,03,04 are defined as in
fig.1. We introduce four new vertical variables Y},

-2<Y1s<0

-35Y9<-1
-3<Y3<-1
-4<Y3<-2

By first expanding the hyperbolic cosines ,éh is

M'X\Y'\Z) expressed as the sum of four terms:
IR 77777, Y=-1
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e o, Proceeding the same way than for the infinite
M'3(X',-4-Y,Z) depth function, the sine function is expanded in
series of powers of the time variable T':
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Fig.1 : Sketch of the geometrical parameters

Expanding now the function (1-exp(-2K)""!

(1+exp(-2K))*?
(1- exp(-2K))*1
(1+ exp(—2K))i*!

oo

Zau exp(-2jK)
j_

in series of powers of the variable exp(-2K) we obtain:

where the coefficients matrix a;;j is easilly built by the recurrence relationship:

a;; = (-17*1

p=j-1
lag-nj|+2 Y |ac-np|

p=1

Thus, finally, the Green function is given by the following expansion:

with: a@;1=1; ay; =(—1)j+1(1+la1(j_1)|) 3)

k=4 8 VIR
Gy = 21 S 1)‘+1(2L 1)!21%- [ K expl-K (2 - 2~ Yi)] Jo (KRYAK )
i=1 Jj=1 0

- The next stage is the evaluation of the integrals in the above expression. We propose the following two

methods.
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LEGENDRE POLYNOMIALS, This first method is based on the identity (Gradshteyn & Ryzhik 6.624):
J’exp(-uk)Jo(k 1- p2)kYdk =T(v + DP, (1) )
0

Plugging(5) in (4) leads, after some manipulations and reordering, to the result:

Gr(M, M’ T)—c‘; (M, M",T) + G..(M,M5,T) + G, (Mg, M",T) + G..(My,M4,T) +

1 i! p2i-1 P;(up) (6)
+z 2( DH 1)| ' 2 @y zil
k=1 i=1 Pjk

with yj=[2G-D-%i] , pa=X-X2+y32+(Z-27% and pp=y/Pjk

The four infinite depth Green function terms represent the contribution of j=1 in the summations. They
can be dropped out if one starts the last sum at j=1 instead of j=2.

SUCCESSIVE DERIVATIVES, In this second approach we use the following identity (Gradshteyn &
Ryzhik 6.621):

fo ¥ expi-ab) gk ==<—1>"‘ﬂ‘”ﬂ[(" g7 -a) (o] % ] ™
0 da™

which lead to the formula:

k=4 < .2i-1 > i
% T 1
Gr(M,M",T) =~ 2(2._1),2 d [ ] 8)
k=1i=1" "V 2 dy,k Pk
The successive derivatives in the last summation may be computed by:
1 m:Int(%) 9
dn 2 2\ 5 an— m
n(a tR ) 2= 2 bnm 2n-2m+1 @
da m=0 2, p2\ 2
(a +R ) 2

where the constant coefficients b,,, derive from a simple recurrence relation.

NUMERICAL RESULTS,

Expressions (6) and (8)-(9) above give the Green function as a series in positive odd powers of the time
variable T. The infinite series in { and j are troncated at i=I, respec. j=J. In both methods, recurrence
relations are used to calculate the successive terms of the inner series. So, it is very easy to implement
an algorithm where I and J may be increased as far as necessary to obtain a convergence. The
coefficient matrices a;; and by, are constant. Thus they were tabulated once for all and stored in a

permanent file.

Both methods have been implemented and tested for various combinations of source submergence,
radial distance and water depth. In each case, we first computed a reference solution by inverse Fourier
transforming the corresponding frequency domain Green function for which robust algorithms were
developped in our laboratory (Delhommeau 1989).

Then the computations were performed using successively the Legendre polynomials (6) and the
successive derivatives (8)-(9) methods to evaluate the coefficients of the series in T. The time variable T
was increased by constant steps from zero up to a value were the series began to diverge.

We give herein the results for two typical configuration: one with a relatively large value of the
horizontal distance: R=5, the other with a small value: R=0.25. For the first one (Fig.2) we see that the
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Fig.2: The time-domain Green function for: Fig.3: The time-domain Green function for:

M’(0,-1,0) andM(10,-1,0), with =2 M'(0,-1,0) andM(0.5,-1,0), with A=2

successive derivatives method give accurate results up to =10, when the other method begins to fail to
converge before T=4. For the moderate values of R (fig.3), the reverse situation is observed: The
Legendre polynomials method allows to reach greater time values than the derivatives. Then we
suggest to keep both the algorithms in a general routine, and to switch between them regarding the
value of the horizontal distance R.

In term of computing time the Legendre polynomial method was found to run approximately two times
faster than the derivatives. At the moment, without any optimization, the cpu ratio with the infinite
depth time-domain Green function lies between twenty and fourty for a five digit accuracy in both cases.

We are aware that the small time range was vi;}i'é:'v‘éfittriplest angle of attack of the problem. So, after this -

warm-up, we have begun to study the moderate and large time ranges. We hope to be able to give
useful innovative results at the next Workshop.
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DISCUSSION

Korobkin A.: Is there overlapping time-interval of your expansion and that presented
by Prof. Newman? '

Clement A.: We surely need an expansion for large time, overlapping with the short time

expansion presented here. So, we shall use expansions, like those presented by Newman,
which effectively overlap, for large time calculations. I want to point out that our formu-
lation works from small to “medium” time range. If you look at the results we give, you
will see that we reach a value of R/T = 0.5 in the large radius test case and R/T = 0.05
in the other case, passing through the “wave front” value R/T = 1 without any numerical
trouble. So the need for an intermediate expansion is not so evident.

Yue. D.K.P.: Your numerical results are for relatively deep submergence of the field and

source points (as a result the Green function near z/t ~ 1 does not resemble a wave front
at all) — do your algorithms have similarly numerical performance for the case of small
Y+Y'?

Clement A.: We did not check the performance of an algorithm for all the possible
combinations of the parameters R,Y +Y"’,T - .. So, I cannot answer precisely your question
about the convergence behavior in that case. But, regarding what happens in the infinite
depth case, we can anticipate a more and more oscillating Green function as both points
approach the free surface, and probably a more difficult convergence of the waves. We
shall investigate this point precisely in a near future to be able to give a better answer to
your question.
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