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Introduction

Herein we consider nonlinear waves incident to a long wedge. Under the
assumptions of potential flow and forward diffraction, Yue and Mei (1980)
obtained the cublc Schrodinger equation to describe the evolution of
diffracted steady wave trains. The wave field shows the generation of
stem waves along the wall which is closely related with the Mach reflection
of shock waves. Miles (1977) clarified that the basic mechanism of the
Mach reflection is .the long-scale evolution of nonlinear waves. On the
other hand, it is recalled that nonlinear wave trains are likely to be
unstable, when they are subject to any small side~band disturbances
(Benjamin & Feir,1967). Therefore it is natural to raise a question about
the stabllity of the nonlinearly-diffracted wave field. As a first step
towards this problem, it is aimed in this abstract to study the nonlinear
diffraction of basically stably-modulated wave trains.

Formulation

Let us consider modulated waves with typical amplitude A, incident to a
long wedge stationary in deep water, of which the angle is 2a. The
frequency and wave number of carrler waves are denoted by v and k,
respectively, and its modulation frequency by Q as depicted in Fig.1. It is
to note that the temporal and spatial variables involved in the problem are
vastly different. We may classify them into three groups ; the spatial and
temporal scales associated with carrier waves (x,t), those assoclated with
modulation (K', 0') and the length scale of the wedge (L). The orders
of relative magnitude of these variables may be expressed in terms of the
wave steepness, &, like O(1), O(c"), 0O(c®), in this order, where : is
assumed small. To deal with these variables of different scales, it is
relevant to employ multiple-scale expansion techniques. In accordance
with the scheme, the velocity potential and the free surface are first
expanded asymptotically with respect to ¢ and then further expanded into
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Fourler serles with respect to time t. It is well known that the first-order
solution is trivial and the second-order solution claims the conservation of
wave action. The evolution of wave amplitude is obtained at the third
order as below :

aA/aXa + (/4)(22A/aX42 - 25°A/aY?) + I%|A12 A = 0. (1)
Here nondimensional variables are defined by
A = A/Ao, X1 = koxy, X2 = kg, Y = kyy, T = by, (2)

and (X;X;) are long-scale longitudinal length variables and 5 stands for the
thinness of the wedge. This is known to be the Zakharov equation. The
general form of the solution contains an integral constant which physically
represents a current-like flow. In the above equation, this term has been
simply discarded, because the current Is small in deep water.

if it can be assumed that the diffracted waves as well as the incident
waves are sinusoidally modulated, we finally obtain the cubic Schrodinger
equation.

aAloXa = (i/2)o°AloY? + i(-* + 6°|A|%) A = 0, (3)
where u represents the dispersion (eu = K/2Kk).

The first term means the evolution of the wave amplitude with respect to
the longitudinal distance, X;, and the second one corresponds to its lateral
diffusion, while the third term reflects both the dispersion and the
nonlinearity. i the incident waves are uniform, le. 1 = 0, it reduces to the
usual cubic Schrodinger equation Yue and Mei obtained. The above
equation may be interpreted as the equation of motion for an oscillator of
two-degrees of freedom with a nonlinear spring.

Numerical Result

For computations, the Crank-Nicholson algorithm has been utilized for X
derivatives and the centered difference is taken for Y derivatives. To limit
the dimension of the computation domian, a boundary condition is
imposed at the numerical boundary, where Y » 1.

Computations are made for two wedges, whose half angles are 17.55%(¢? =
0.1) and 24.09° (> = 0.2). Three wave steepnesses are considered, /.e.
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kAo = 0.05, 0.1, 0.3. The corresponding values of & are 0.1582, 0.3163,
0.9489 fora = 17.55" (¢* = 0.1) and 0.1118, 0.2236, 0.6708 for a = 24.09°
(2 = 0.2). Two modulations are taken, Le. K/2k = 0.1 and 0.3.
According to the result of Longuet-Higgins (1978), these modulations are
stable except the cases of K/2k = 0.1 for kAo = 0.1 and 0.3. The
nondimensional length of one modulation I8 X; =z /2u and It takes the
nondimensional time of To = » / i for carrier waves to propagate over this
distance.

Fig.2 shows the snapshots of wave field for kAo = 0.3 and K/2k = 0.1, in
which the ordinate represents the lateral coordinate Y. Attention should be
paid to the different scales of the lateral length Y(= kcy) from that of the
horizontal length Xz( = ke®x). The numbers denote the dimensionless wave
amplitude. The overall features for two different wedge angles are similar
each other. Stem waves are observed near the wedge and its width
increases almost linearly downstream. The stem angle is measured to be
7.2° for the narrower wedge and 7.0° for the wider wedge. Although the
difference Is tiny small, its trend is in the direction to support the
experiments.

All other numerical results sofar coincides with the experimental findings
(Wiegel,1964) and indicate that the nonlinearity in the Schrodinger equation
affects the wave evolution more strongly than the dispersion.
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Fig.1 Definition Sketch
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Fig.2 Contour of Diffracted Waves along the Wedge
(kAo = 0.3 and 1 = 0.1)
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DISCUSSION

Korobkin A.: 1) Equations of gas dynamics are of hyperbolic type, but the nonlinear
Schrodinger equation seems to be of parabolic type. Perhaps this is a reason why the Mach
stem in your calculations was unstable.

2) I do not know another numerical scheme for NSE except Crank-Nicholson’ one. What
is your opinion, why this scheme is so popular? Is it the best one?

Choi Y.R. & Choi H.S. : The cubic Schrédinger equation is basically of hyperbolic
type, which becomes clear 1f we consider the real and imaginary parts of the equation

under the condition of °‘A = 0. The possible instability may come from the long-scale
evolution of diffracted Waves which might has an analogy with side-band stability. The
parabolic approximation is meant in our study that the diffracted waves propagate mostly
in the direction of incident waves.

To your second question, we are not in a position to judge whether there is any better
scheme than the Crank-Nicholson scheme we have used. The reason why we have used
this scheme is that it is relatively stable and widely used for numerical computation of the
cubic Schrédinger equation.

Yue D.K.P.: 1) It is quite remarkable that the effect of modulation is so small. Could
you offer a simple explanation or physical argument that this should be so?

2) Given that the modulation does not appreciably affect the diffraction by the wedge,
the question of instability can presumbly be addressed by following the evolution of (longi-
tudinal and lateral) disturbances imposed on the steady(uniform incident wave) diffracted
solution. Would you comment on this?

Choi Y.R. & Choi H.S.: The last term of the cubic Schrodinger equation we derived
may be manipulated as a nonlinear spring with a potential well, i.e. the modulation is
linear and the nonlinearity is cubic to the wave amplitude. The cubic nonlinear term
dominates when the amplitude is relatively large as in this case. We conjecture that is
a reason why the nonlinearity is more important than the modulation in our numerical
results.

To your second question we fully agree to you. In fact we expected the diffraction by a
wedge, in particular its oblique component as an agency which might trigger any instability
of the wave field.
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