(Abstract for the 9th International Workshop on Water Waves and Floating Bodies, April 1994)

CALCULATIONS OF SURFACE-WAVE RADIATION AND DIFFRACTION
BY REGULARIZED COMPOSITE INTEGRAL EQUATIONS

S. Ando

Defence Research Establishment Atlantic, Dartmouth, Nova Scotia, Canada

The application of boundary integral methods to the problems of surface-wave radiation and
diffraction by floating bodies suffers from nonexistence or nonuniqueness problems for a denumer-
ably infinite set of characteristic frequencies each corresponding to an eigenvalue of the integral
operator [1]. These characteristic frequencies, or irregular frequencies, depend only on the shape
of the wetted surface of a body, and, for an arbitrary-shaped body, their location is not known in
advance. Furthermore, the approximating matrix equations become ill-conditioned with respect to
the wavenumber k when k lies in the vicinity of an irregular frequency. It is therefore necessary to
have a formulation that is well-conditioned at all frequencies.

Lee and Sclavounos [2] made use of the modified integral equations, in which the integral
operator itself is modified by linearly combining single- and double-layer potentials. They directly
discretized and evaluated the resulting integral equations that include an unbounded operator
involving the double normal derivative of the exact Green’s function. Their work, while successfully
demonstrating the effectiveness of the direct formulation, underscores the importance of choosing
an optimal value for the coupling parameter for a particular body geometry in order to minimize
the condition number of the approximating matrix equations. Based on their experience, they
recommend a pure imaginary number 0.2¢ as the coupling parameter for arbitrarily-shaped bodies.
In case this value does not perform well for a given shape, they suggest a search for the optimal value
by estimating the position of the irregular frequency followed by determination of the minimum
condition number over a range of values of its modulus. This could involve a substantial increase
in computational effort; moreover, irregular frequencies for bodies of general geometry such as ship
hulls are not usually known, as mentioned above.

This prompts us to examine the regularization of the modified integral equation in order to
assess its suitability for practical radiation and diffraction computer programs. Since all the integral
operators in the regularized formulation are compact, the numerical evaluation of the integrals is
expected to be more amenable to accurate approximation. Thus, the regularized formulation offers
the promise of being well-conditioned and of not requiring any special consideration to yield accurate
results. Nevertheless, no numerical experience concerning wave radiation and diffraction problems
has yet been reported. In operator notations, the regularized formulation used in this paper for
the radiation problem can be expressed as ([1], [3])
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for p on the wetted surface. (A similar expression can be derived for the diffraction problem.)
In (1), ¢; is the potential for the j-th mode of body motion; L and M are respectively single-
and double-layer potential operators based on the exact Green’s function for Laplace’s equation;
N¢; is the derivative of M¢; in the direction of the outward normal at the field point; and « is a
strictly complex coupling parameter. The superscript ¢ indicates the transpose, and the subscript 0
indicates the operators based on the free-space Green’s function. Here, Lo is used as the reducing,
or regularizing, operator. The numerical implementation of the regularized formulation and the
results of calculations, including comparison with the numerical results by the direct method of
Lee and Sclavounos [2], are described in this paper.

Although the regularized formulation (1) is more complicated and requires more computing
time than the direct formulation used in [2], this need not be a major drawback. For it can be
shown [1] that wavenumbers of irregular frequencies are bounded below by

k>1/T (2)

where T is the draft of the floating body, so the coupling parameter may be set to zero for k < 1 /T.
Furthermore, a sharper estimate of the lower bound for characteristic wavenumbers than (2) for
an arbitrary 3-dimensional body can be obtained by considering a rectangular body of length L,
breadth B, and draft T', which encloses the body in question, and for which the irregular frequencies
are found by straightforward application of separation of variables:

kT = pT coth uT, : (3)
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and by using the following theorem (the proof is given in the paper):

where

Theorem. Let § and S’ be smooth immersed surfaces, concave upwards, of floating bodies such
that S O S’, and let k; and k,’ be the least wavenumbers for irregular frequencies for S and §’,
respectively. Then k; < k;'.
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DISCUSSION

Clement A.: The robustness of such a method can be characterized by the variation
of the condition number with increasing number of panels (refining the discretization).
Do you have any numerical experience and/or results to illustrate the robustness of the
regularized composite integral equation method?

Ando S.: By a robust method, I mean it gives low condition numbers irrespective of
body shopes, mesh sizes as well as wavenumbers. This work is still in an early stage, and I
have not yet done any numerical experiment. I’'m hoping to show some results at the next

Workshop.

Kuznetsov N.: Other integral equations without irregular frequencies were proposed in
papers: 1) T.S.Augell, G.C.Hsiao & R.E.Kleinman, J. Fluid Mech. 166 (1986) 161-171

2) N.G.Kuznetsov, Math. Notes. of the Acad. Sci. of the USSR 50 (1991) 1036-1042
(Transl. from Russian)

Ando S.: Thank you for your remarks.

Lee C. H.: Your comment that the bad-conditioning is due to the direct numerical
evaluation of the hyper singular kernel is not quite correct. The bad-conditioning of the
discretized form of the composite integral equation is due to the property of the addi-
tive first-kernel integral. The direct numerical integration, however, produces large dis-
cretization error which is amplified by the bad-conditioning of the system. I expect your
regularization reduces this discretization error and produces better results than ours.

Ando S.: As you pointed out, integral equations of the first kind suffer computational
instability because of the absence of dominant diagonal terms. In the case at hand, this
disadvantage is further aggrevated by the strong nonsmgulamty of the kernel, and this is
what I meant.




