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1 Introduction

We consider the incompressible irrotational ax-
isymmetric flow caused by a point sink beneath
a free surface. This is a problem of some scientific
interest and considerable engineering importance
and has been the subject of a number of investi-
gations in recent years. '

Largely because of analytic and computational
simplification, most of the studies are for the two-
dimensional case and assume steady flow (Pere-
grine 1972; Vanden-Broeck, et al 1978; Tuck &
Vanden-Broeck 1984; Sahin & Magnuson 1984;
Hocking 1985; Collings 1986; Vanden-Broeck
& Keller 1987; Hocking 1988; King & Bloor
1988; Mekias & Vanden-Broeck 1989; Mekias &
Vanden-Broeck 1991; Mekias & Vanden-Broeck
1993). A notable exception is Tyvand (1992)
who focussed on the initial evolution of the free
surface using a small time expansion. Argu-
ing that nonlinear free-surface effects are exactly
cancelled by gravitational effects for a particu-
lar Froude number, he found the critical value of
F = Q/2x+/gh3 = 1/3 for the formation of a cen-
ter dip. (Here Q is the flux rate of the sink, h its
submergence with respect to the far-field /initial
free surface, and g the gravitational acceleration.)
This value is appreciably lower than ‘the upper
limit of 1.42 of Hocking & Forbes (1991) based on
a steady-state analysis, which, as pointed by Ty-
vand, shows that the unsteady problem offers new
insight into its steady counterpart.

Investigations of the three-dimensional problem
are fewer and more recent with the exception
of experiments (e.g., Lubin & Springer 1967)
which are, of course, somewhat easier to achieve.
The salient feature of the observations is the for-
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mation of a dip on the surface above a crit-
ical Froude number. Assuming steady state
and a stagnation point at the surface above the
sink, Forbes & Hocking (1990) used a boundary-
integral-equation (BIE) computation as well as a
small-Froude-number expansion analysis to show
that such solutions exist for small Froude number,
in this case F = Q/4m+/gh® < 0.509. This, how-
ever, does not rule out unsteady (steady) solutions
below (above) this value. Zhou & Graebel (1990)
performed numerical simulations of drainage from
a cylindrical basin using a nonlinear axisymmetric
BIE method. Their results of the unsteady prob-
lem showed two different phenomena depending
on the drain rate. For relatively large Q, a dip
forms at centre of the free surface which is rapidly
drawn into the drain. For smaller @, an upward
jet is formed. In that work, however, the Froude
number was defined with respect to the tank ra-
dius and the precise dependence of their results on
F is unclear. Recently, Miloh & Tyvand (1992)
extended the small-time perturbation analysis of
Tyvand (1992) to axisymmetric flow and identified
the corresponding critical Froude number for the
formation of a dip to be F = 15-1/2, This analy-
sis depends only on the (high-order) time deriva-
tives of the center surface elevation at small time,
and its validity for the actual physical problem is
unclear. ‘

In this paper, we consider the unsieady axisym-
metric free-surface flow around a submerged point
sink which is started abruptly from rest to a con-
stant volume rate.




2 Method of Solution

We choose time and length units such that the
initial (quiescent) submerged depth h of the point
sink and gravitational acceleration g are both
unity. In an otherwise unbounded fluid, the prob-
lem is governed by the Froude number F =
Q/4w+/ghS, where Q is the (constant) volume flux
rate of the sink which is assumed to be turned on
abruptly at time ¢ = 0.

We assume axisymmetry and employ the numer-
ical technique of Dommermuth & Yue (1987)
to solve the fully-nonlinear unsteady poten-
tial flow. The method is based on a mixed
Eulerian-Lagrangian approach using a ring-source
boundary-integral-equation (BIE) scheme for the
solution of boundary-value problem at each time
instant. The computational domain is closed by
assuming constant finite depth H. To allow for
long-time simulations, the nonlinear domain is
matched to a general linear transient wavefield
outside a matching cylinder of radius R. Thus,
for a sufficiently large fixed R (which is a func-
~ tion only of the nonlinearity of the problem), the
nonlinear simulations can, in principle, be contin-
ued indefinitely. For the BIE solution, the trace
of the computational boundary is approximated
by cubic splines over (Lagrangian) nodes. The
potential and its normal derivative between adja-
cent nodes are represented by linear basis func-
tions based on arclength. To maximize stability
of the time integration, the nodes on the free sur-
face are maintained at equal (arclength) spacing
via a regridding procedure after each time step.

To tract the rapid cusp-like development of the
free surface, the method of Dommermuth & Yue
(1987) is improved in two major ways: (i) con-
sistent fourth-order Runge-Kutta time integration
is maintained by moving the surface in interme-
diate steps; and (ii) dynamic time stepping is
used based on a Courant criterion in terms of
the maximum instantaneous Lagrangian velocity.
These refinements were not considered in the ear-
lier work because of the complexities associated
with the matching boundary.

'3 Results

Based on extensive convergence tests for the full
range of Froude numbers we consider, we choose
a computational domain of H = 6 (to represent
effectively deep water), R = 6, with N = 240
segments on the boundary. The expected error in
the free-surface elevation is 0(0.2%). We now per-
form a systematic computational search over F to
provide a complete quantification of the problem.
(Critical delineations are subsequently checked by
varying the computational parameters H, R and
N).

Our computational investigation reveal three dis-
tinct flow regimes depending on the Froude num-
ber F:

1. F > 0.1930. This ‘super-critical’ regime is
marked by the rapid cusp-like collapse of the
free surface towards the sink. The decrease
of the surface elevation is everywhere mono-
tonic in time. We are able to compute well
after the cusp is developed although the sim-
ulations eventually break down as the sur-
face approaches the sink. Figures la and
1b show typical results for the case of F =
0.24. Plotted are the time evolution of the
free-surface elevation directly above the sink,
n(r = 0,1), as well as an instantaneous sur-
face profile n(r,i*) at a late stage t = t* of
the development. Note that the critical value
for (eventual) collapse based on the small-
time expansion of Miloh & Tyvand (1992)
of F = 15-1/2 ~ (0.258 is well within this
regime.

2. 0.1930 > F > 0.1924. This ‘trans-critical’
regime is characterised by a sharp reversal of
the free surface immediately above the sink,
eventually developing into a sharp upward
cusp. Figures 2a and 2b show typical re-
sults for F =0.1927. The free surface initially
drops, reaches a minimum depth at the cen-
ter, and then abruptly rebounds to form a
sharp upward spike. This upward jet resem-
bles that observed by Milgram (1969) for the
case of the sudd=n deceleration of a cylindri-
cal layer of fluid under free fall. Our simula-
tions are able to follow the full development
of the upward jet but eventually fail as the
spike develops.
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3. F < 0.1924. In this ‘sub-critical’ regime, the
flow is marked by (spatially) wave-like behav-
ior of the free surface. The temporal evolu-
tions are much slowly (longer time scale) than
the higher Froude number cases with the sur-
face elevation resembling that of a damped
oscillator. The detailed spatial and temporal
features, however, are quite varied and de-
pends on the specific value of . An example
result for 7 = 0.1 is shown in figures 3. Be-

cause of the matching boundary, we are able

to continue simulations to well beyond 0(10)
characteristic time (limited only by compu-
tational effort). At this time, we find evi-
dence of approach to asymptotic steady state
for small ». This provides partial confirma-
tion of Forbes & Hocking (1990)’s finding of
steady state solutions for sufficiently small
F, although our critical value is substantially
lower then their value of 0.509 for the exis-
tence of steady-state solutions.

It remains to resolve whether the initial starting
rate of the sink would affect the present findings
(Zhou & Graebel 1992). Work is ongoing on this
and other issues related to the sub-critical solution
and will be reported at the workshop.
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