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Abstract

Here we show that gravity driven water waves — on a fluid
of arbitrary variable depth — interacting with rigid bodies
floating freely in or below the free surface can be described
as an infinite-dimensional Hamiltonian system. It will ap-
pear that, with appropriate choices for the canonical vari-
ables and the Hamiltonian, the complete set of equations
of motion — i.e. the nonlinear free surface conditions and
the hydrodynamic equations of motion for the rigid bodies
- can be written in a canonical form.

1. Introduction

For all we know, the first description of the evolution of
water waves in terms of a Hamiltonian density and gener-
alized variables was made by Zakharov (1968), who pre-
sented the canonical equations of motion for an infinite-
depth free surface potential flow in a homogeneous gravity
field. Few years later, Broer (1974) independently showed
that — for a fluid of arbitrary depth — the nonlinear kine-
matic and dynamic free surface conditions constitute an
_infinite-dimensional Hamiltonian system, with the eleva-
tion and the free surface potential as the canonical vari-
ables and the total energy as the Hamiltonian density.
In a subsequent paper Broer, van Groesen, and Timmers
(1976) presented a corrected proof of the equivalence of
the canonical equations with the free surface conditions,
and paid attention to conservation laws and the stability
of approximate (Boussinesq-type) models. Other contri-
butions to these special wave descriptions are due to Miles
(1977, 1981). For an overview of Hamiltonian formulations
in fluid mechanics (including free surface flows) we refer
to Salmon (1988).

The first optimal variation principle for nonlinear wa-
ter waves is due to Luke (1967), who showed that the
full set of governing equations for the classical water-wave
problem can be obtained from a single variation princi-
ple. In Luke’s formulation, which is related to those given
by Clebsch (1859), Bateman (1932) and Friedrichs (1933),
the integrated Bernoulli pressure plays the role of the La-
grangian density, and the velocity potential and the free
surface elevation are the independent variables.” Miloh

(1984) presented an extension of Luke’s principle for water
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waves interacting with multiple floating bodies oscillating
at a common frequency.

For a large number of dynamical systems the transition
from a Lagrangian principle to a Hamiltonian formulation
can easily be made by means of the so-called Legendre
transformation. The essence of this transformation is the
definition of ‘canonical’ momenta which are conjugate to
the chosen ‘canonical’ coordinates. For a certain class of
these systems, these canonical variables allow the transi-
tion from a single second-order Euler-Lagrange equation
to a pair of first-order canonical equations, usually writ-
ten in the well-known skew-symmetric matrix form, see
e.g. Goldstein (1980). The possibility of this transition
with respect to the water-wav: problem was first recog-
nized by van Groesen (1978); here it will be applied to the
nonlinear wave-body problem.

The main purpose of this paper is to extend the
‘Zakharov/Broer/Miles’ Hamiltonian formulation to wa-
ter waves in hydrodynamic interaction with freely floating
bodies. The outiine is as follows: in section 2 a variation
principle is presented for water waves interacting with an
unrestrained body floating in or below the free surface.
With the integrated pressure as the Lagrangian for the
fluid, and with kinetic minus potential energy as the La-
grangian for the body, the proposed variation principle is
shown to yield the field equation, the equations of motion
for the fluid and the body, and the Neumann boundary
conditions on the bottom and the wetted body surface.
In section 3 canonical variables for both the fluid and the
body are found by means of direct Legendre transforma-
tions. With the total energy as the Hamiltonian, the non-
linear free surface conditions and the hydrodynamic equa-
tions of motion for the body are written in a canonical
form. We close our discussion with concluding remarks in
section 4.

2. Variation Principle

In this section Luke’s (1967) variation principle for the
classical water-wave problem is extended to the hydrody-
namic interaction with a freely floating body.

The system under consideration consists of a fluid,
bounded by the impermeable bottom B (which is not nec-
essarily even), the free surface F, and the wetted surface S
of a rigid body, see Figure 1. In the horizontal directions z
and y, the fluid domain is cut off by a cylindrical vertical
surface T of infinite radius; ¥ extends from the bottom to
the free surface.
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ine pody mass and moments about its principal axes of
inertia are denoted by M and I = (I}, I, Is)7 respectively.
The position of the body is specified by the centre of grav-
ity g = (z1,z2, ::3) , corresponding to the surge, sway
and heave motions respectively, and the’ body orientation
by the roll-pltch-yaw vector’ 9(; = (01,02,03) As usual,
gravity is acting in negative z-direction.
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Figure 1: Definition of fluid domain and floating body.

Following Luke, the Lagrangian for the fluid is given by
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i.e. the Bernoulli pressure p integrated over the transient
fluid domain Q (¢); the fluid density is taken as unity.

The Lagrangian for the body is taken as kinetic minus
potential energy, that is

Lo =Ky =Py (2)
where
| N I - SR N
Ky = §MIG‘IG+§(1®9G)‘9G (3)
Py, = Mgé- i (4)

In (3) the symbol ® is used to define the component-wise
product of two vectors: a3 ® b= (albl,a2b2,a3b3)T.

The Lagrangian for the total system, consisting of the
fluid and the body, is defined as the sum of the separate
Lagrangians, that is’

L.=C+0Ls ) (5)

With the above definitions the proposed variation princi-
ple reads

ta

/ Cdt (6)

t

§J=0 with J=

for all variations in the free surface elevation n, the ve-
locity_potent‘.ial ¢, and the body position £5 and orienta-
tion §g. These variations are subject to the restrictions
that they vanish at the end points of the time interval,
i.e. at times ¢t = ¢; and ¢ = t3; moreover, the variations
in 7 and ¢ equal zero on the vertical boundary at infinity,
i.e. on . Then, following the standard procedure in the
calculus of variations, (1-6) yields

/ '[//(64;5: + V¢ -Vép)dQd ) dt

tr L)

[{ frineras}
)
f{

8J =

t

+ / Mfc, 6ZG~M_!]€3 (Szc}dt
t
t2

; /{(f® G 88 bdt =0 (7

t

where 7 is the unit normal vector along 92 O S, and

R(n)= (1+ni+n]

giving dS = Rdz dy.
In (7) £5 denotes the-position of a point on the wetted
body surface S; the change in Zs due to the vanatlons

)2 (8)

in £¢ and dg is given by

6%s = 6Zg + 80 x ¥ (9)

where ¥ = s - £, see Figure 1.
Taking into account the motion of Q (t), we may write

[/ 8¢dQ 4 /]]Mdﬂ [/U,MR 'S

n(t) (1)
- /f i-‘5~ﬁ)6¢d.5‘ (10)
S

The first term on the right-hand side of (10) vanishes due
to the restriction §¢ = 0 at times ¢ = ¢; and t = t».
With Green’s first identity we obtain:

// Vé-Vépd = / $nbddS

a(¢) an .
j] V2464 dQ2 (11)

a(t)

"

Due to the restriction §¢ = 0 on £ C 99, the correspond-
ing contribution on the right-hand side of (11) vanishes.
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Integration by parts, and using the restrictions éZg = 0
and 605 =0 at timest =t; and t = ta, gives

ta 129
/M:i"c 6Zg dt = -/M%G .6%¢ dt

(12)
ta . . t2 .
/(f@é'a) ~69"Gdt_—_—/(f®ia) 80 dt (13)
ts 15
With (7-13) the proposed variation principle reads
57 = / //paqR ‘dS+// V2 66d0 b dt
a(t)
- /{/](R¢n ~ )R 16¢d5} dt
t
ta
- /{//(¢n-f <ﬁ)5¢d5}dt
ty
- /{//onéodS} dt
B
+ /{([/pnds Mgés - Wzg) 6zc}d
Lt
t3
+ /{(ﬂp(rxn)d5~1®00) 60G}dt

th

= 0 (14)

From this it is clear that invariance of J with respect to a
variation in the free surface elevation n yields the dynamic
free surface condition:

_<¢,+%(V¢-V¢)+gz)=0 on F (15)

Similarly, invariance of J with respect to a variation in the
velocity potential ¢ yields the field equation:

V3% =0 in Q() (16)
the kinematic free surface condition:

M+ Nzfz +ydy = ¢, on F (17)
the ‘contact’ condition on the wetted body surface:

¢n=Zs-A on S (18)
and the impermeabiliiy condition on the bottom:

én=0 on B (19)

Finally, invariance of J with respect to variations in the
body position £ and orientation 6 yields the equations
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of motion for the body:

//pr'idS-—Mgé';, = Mig (20)
g
//p(Fxﬁ)ds = Tod (21)
) .

Thus it has been proven that (1-6) is a proper variation
principle for nonlinear gravity waves interacting with a
body floating freely in or below the free surface. The ex-
tension to multiple bodies is straightforward.

3. Hamiltonian Formulation

In this section the Hamiltonian theory for the classical
water-wave problem is extended to the interaction with
an unrestrained body floating in or below the free surface.
All definitions from the previous section with respect to
the fluid domain and the body are adopted here.

With regard to the body, the ‘coordinate’ £ is defined
as the combination of the position vector £z and the ori-
entation vector 9};:

zg
£€= [ 0 ]
Similarly, the ‘normal’ 7 along the wetted body surface S
is defined as

(22)

L _ 0
and the dlagonal mass’ matrix M is defined as
diag(M) = [M, M, M I, D5, Ig] (24)

With the above definitions the Lagrangian for the system
can be written as

n/(/[ (o'x +1(v6- Vo) +gz) 49

+ gME-E- Moy € (25)

Taking into account the evolution of the fluid domain and
integrating by parts, we may write

// ¢dQ+/¢mdzdy

a(t)

M£-£+//¢ § u ) ds
/// ( (V- V¢)+gz> dQ

a(t)

£.=

1, = = . -
FME-§ - Myés € (26)
where f 7 is the normal velocity of a point on S. The first
term on the right-hand side of (26) mtegrates out to the
end points of the time interval considered.




Considering (26), we may write formally

Ly (ns,0) = my1js — H,y (ms, ) (27)

with the following definitions: the canonical coordinates
are given by

s = (ny, M) = (mf ) (28)

i.e. the free surface elevation and the body position and

orientation.
The canonical conjugate momenta are given by

7y = (1), 7)) = (¢,Mé‘+/ ¢st) (29)
S

i.e. the free surface potential & = [¢],_, and the rigid
body impulse plus a ‘Kelvin impulse’ contribution of the
velocity potential over the wetted body surface.

- The Hamiltonian is given by

///( (Vo Vo) +gz> dQ
Q(t)
+ %M{-{Jr Mgéy & (30)

l.e. the total energy of the system.
Then, with ¢ satisfying the following boundary value
problem (BVP):

V=0 in Q(t) (31)
¢n=€-F on S (32)

v ¢n=0 on B (33)
¢(z,y,2) =®(z,y) on F (34)

we can formulate the following theorem:

Theorem: The equations of motion for gravity driven wa-
ter waves interacling with a body floaling freely in or below
the free surface describe an infinile-dimensional Hamal-
lonian system in the canonically conjugale variables =,
and n, and with the total energy H, as Hamillonian: the

canonical equations
s - 0 -1 67{3/6 Ty
a(5) =0 o) (e ) o
are equivalent with the nonlinear free surface conditions
and the hydrodynamic equations of motion for the body.
The proof of this theorem follows directly from the next
lemma:

Lemma: The variational dertvatives of the kinelic fluid
energy

K@= [[[578-v8)a0 (36)
a(t)
are given by:
_ 24
wky = RO)(G) (1)
2Kr = 3(V8:98).,~6eks (32) 09
“/z=n

Proof of (37): Keep 1 and ¢ fixed and let ¢ vary such that
its variation é¢ corresponds to a change §®. Then the first
variation in Ky (®, n) reads

n/(/t) V¢ - VépdQ

// [V-(V¢6¢) - V78 6¢] dQ (39)

Q(t)

5K (6@)

With Gauss’ divergence theorem and (31-33) we obtain
6Ky (6®) = (V¢ -A)dS],_, 6@ ~ (40)

Using dS = Rdz dy, the proof is completed.

Proof of (38): Now, vary n and assume that the so-
lution ¢ of the BVP is correspondingly modified for the
varied fluid domain. At the modified free surface we have

to lowest order:
d¢
¢(n)+6n <6 )m’

® + 6,0 (41)

¢ (n+én)

It

With the above result the total effect of a variation én
in Ky is found to be

) 1o,
6K (8n) + 6K, (8,®) = 67 {§(V¢ . Vo)::q} (42)
and hence, to lowest order

5., + oK (‘9"‘) = we.ve_  (a3)
z=n

9z 2

from which the second part of the lemma follows.

4. Concluding Remarks

The full set of equations of motion for gravity driven water
waves interacting with unrestrained bodies floating in or
below the free surface has been presented in a canonical
form. The transition from the variational (Lagrangian)
principle to the Hamiltonian formulation was made along
the formal line of a Legendre transformation, yielding the
canonical momenta conjugate to the chosen canonical co-
ordinates for the system and the total energy as the Hamil-
tonian.

The fact tha.t a system of gravity driven water waves
interacting with freely floating bodies can be described
as a Hamiltonian system has several important implica-
tions. In the first place, this Hamiltonian structure allows
a systematic account of conservation laws by considering
the symmetries of the system; see Benjamin and Olver’s
(1982) analysis of constants of the motion for the water-
wave problem and van Daalen’s (1993) generalization of
these invariants to the nonlinear wave-body problem. For
instance, note that from (35) it follows directly that.

s oM, .
H-6H0+%r—0 (44)
6'7 6,’ -
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e e
shows the exchange of energy in a simple wave-body sys-
tem consisting of an extincting cylinder on the free surface
of a wave tank. The computations have been carried out
with a two-dimensional panel method based on a Green's
formulation for the velocity potential.

Secondly, well-chosen approximations to the canonical
equations (35) may provide numerical schemes which con-
serve integrated densities (for instance, the total energy).
Thie above and other implications motivated these inves-
tigations.
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Figure 2. Exchange of energy in wave-body system.
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