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1 Introduction

The Cauchy-Poisson problem treats the waves generated by an instantaneous localised
splash. Waves spread out from the disturbance, the long waves travelling faster than the
short waves. We are concerned with the behaviour near the wave front r = t(gh)'/? for
large t. The corresponding velocity potential is readily expressed as an integral which we
may expect to be able to treat by some modification of the Method of Steepest Descents.
This problem has been much discussed in recent years, with particularly interesting con-
tributions from J.N.Newman who has found a leading term involving the square of an
Airy function whereas the leading term in two dimensions involves just the Airy function
itself. Newman’s result is valid in a narrow zone near the wave front. During the past few
vears | have tried to find a more complete expression but my attempt has met with only

limited success. My asymptotic expansion was found to involve modified Airy integrals
like

/ exp(3iu’ + izu)
uil?
and I have found that this does not imply a contradiction with Newman’s result because
it can be shown that this integral (with suitable limits of integration) is in fact the square
of an Airy function. My asymptotic expansion, like Newman’s, was found to be valid
only in a narrow zone near the wave front. The reason is, that in three dimensions the
integrand has three nearly coincident critical points, (two saddle points and a branch
point,) whereas in two dimensions the integrand has only two nearly coincident critical
points (two saddle points). It may therefore be expected that the asymptotic expansion in
three dimensions depends on two variables rather than one variable as in two dimensions.
Here I wish to describe a new approach which promises to give a wider zone of validity.

du, | (1)

2 The two-dimensional problem

The two-dimensional problem for in initial surface impulse ]eLds to a consideration of
the integral

&(z,0,t) = /00o A(k) coskz cos ot dk, (2)
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where 02 = gk tanh kh, and where A(k) is a coefficient function depending on the shape
of the initial impulse. The phase involves terms like

(—ike +iot) = iT[(utanhu)"? — (X/T)u] (3)
= iT(T - X)u/T - /6 +..], (4)

where u = kh, T = t(g/h)}/?,X = z/h, and T/X is close to 1 near the wave front. This
phase has two stationary points near u = 0. If we neglect higher powers of u in the
expansion, we obtain an Airy function

(22 L [ cos(bus
AiZ) = 7r/o cos(3w + Zw)dw (5)
of the variable Z = 2!/*T?/3((X/T) — 1), but because of the neglect of higher powers of
u this approximation is valid only in a narrow zone of T/X near 1, and does not readily
join up with the stationary-phase expansions away from the wave front. However, the
region of validity can-be extended to a wide zone by the following method. Introduce a
new variable of integration v by means of the transformation

(utanh u)'/? — (X/T)u = ev — v* /6 exactly; (6)

it can be shown that such a transformation exists. The parameter e(X/T) is deter-
mined from the condition that the points of stationary phase on the left and on the
right must correspond. We then obtain an Airy function of a slightly different variable
21/3T2/3¢(X/T), and the resulting expansion is found to be valid in a wide zone including
the wave front.

3 The three-dimensional problem

Let 'us try to apply a similar method to the three-dimensional Cauchy-Poisson problem.
The three-dimensional problem for an initial surface impulse leads to a consideration of
the integral

$(r,0,1) = /0 * A(k) Jo(kr) cos ot kdk, (7)

where 02 = gk tanh kh, where Jo(Z) is the usual Bessel function, and where A(k) is a
coefficient function depending on the shape of the initial impulse. If now we use the
asymptotic expansion

Jo(Z) ~ (2/7Z)? cos(Z — /4), (8)

valid for large Z, we obtain an integral involving circular functions, to which the Method
of Stationary Phase may be applied. For an observer near the wave front the phase has
two nearly coincident stationary points near k = 0, as we would expect, and for the
potential we thus obtain a result which involves integrals like (1). We now observe a
difficulty: we have used the asymptotic expansion (8) for Jo(kr) which is valid for large
kr, but near the points of stationary phase the wavenumber £ is small, and although r
is large it is no} obvious that the product kr can be treated as large. It can nevertheless
be shown by a lengthy calculation that the result is correct, but only in a small region
near the wave front. .
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In my recent work I have tried to use the Method of Statiéna.ry Phase for double integrals.
The integral in (7) can be written as the double integral

‘/’r do ‘/:o kdk A(k) exp(—1kr cos o) cos ot, (9)

which involves only circular functions, so that Stationary Phase is applicable. There are
4 points of stationary phase ( 2 real and 2 pure imaginary) near (o = 0,k = 0) in the
four-dimensional space of the two complex variables o and k. Near (o = 0,k = 0) the

exponent of the exponential exp(—zkrcos o + i0t) can be expanded in powers of o and
k:

(=ikrcosa +iot) = iT[(utanhu)'/? — (R/T)ucosa) ' (10)
{T[(T - Ryu/T ~ u®/6 + (R/2T)ua’® + .., (11)

where u = kh,T = t(g/h)*?>, R = r/h, and T/R is close to 1 near the wave front. We
may obtain an asymptotic expansion by retaining only these cubic terms, but because
of the neglect of higher terms we can again expect only a narrow region of validity. To
obtain a wider region I am trying a transformation of variables of integration from the
variables (u, @) to new variables (v, 8), where

(utanhu)*? — (R/T)cosa = ev — v* /6 + (R/2T)vB*? exactly, (12)

where ¢(R/T) is the same small parameter as in two dimensions, with R/T in place
of X/T; it can be shown that such a transformation exists. This is analogous to the
transformation which gives the wide region of validity in the two-dimensional Cauchy-
Poisson problem. We find that we obtain 4 nearly coincident saddle points near the
origin (v = 0,8 = 0), and we note that the origin lies on the boundary of the region of
integration. We again obtain integrals like (1) but involving the slightly different variable
¢(R/T), and higher approximations can be found by a systematic procedure. This work
is still in progress.
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