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Introduction

In the study of linearized water waves interacting with obstacles, the question of the
uniqueness of the solution is not yet fully answered. That is, are there non-radiating
(and therefore persistent) oscillatory modes at any frequency for some geometry? John
(1950) established uniqueness for the case where the body is surface-piercing and has
the property that vertical lines from the free surface do not intersect the body. More
recently, Simon and Ursell (1984) generalized John’s approach to prove uniqueness for
a wider class of problem. Each of these papers uses a bound on the potential energy
of the non-radiating motion relative to its kinetic energy; as these quantities are equal
a contradiction is established. However, this approach cannot be employed directly in
two dimensions when there are two surface piercing bodies, essentially because the free
surface between the bodies is separated (by the bodies) from both +oco. The purpose of
the present work is to show how a conformal mapping can be used to help to derive a
bound on this part of the potential energy, and thereby prove uniqueness; the end result
is that the solution will be unique provided the frequency is no greater than a parameter
which depends on the geometry.

Statement of the problem

We consider the small-amplitude two-dimensional irrotational motion of an ideal fluid; the
motion is assumed periodic with frequency w, and so is described by a velocity potential
Re{u(z,y)e~*'}, where (z,y) are Cartesian coordinates with origin in the mean free
surface and y measured vertically upwards.

The complex function u must satisfy the following boundary-value problem:

Viu=0 in W, (1)
uy—vu=0 on F (2)
Oufon=f on S, (3)

Ou/dlz| —ivu=o0(1) as |z|— oo (4)
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Here W denotes the region occupied by fluid which is assumed to be of infinite depth,
and S5 is the union of the wetted surfaces of all the bodies (submerged totally or partially).
F' is the free surface which is the part of y = 0 outside all bodies.

The parameter v is positive as it is equal to w?/g; g is the acceleration of gravity. We
also assume that u € L (W) N H(W,) for any bounded region W, C W, where H!
denotes a Sobolev space.

We now suppose that there are two surface-piercing bodies; we shall prove that the
homogeneous (f = 0) problem has only a trivial solution, and hence that the inhomoge-
neous problem has a unique solution, for a range of values of v.

Let the two bodies occupy domains Dy and D_, and let them be contained inside
semicircles of radius r, and r_ respectively, each centred on the mean free surface. For
the proof that follows we need to assume that each body is in contact with its circum-
scribing semicircle at the waterline position nearest the other body; thus the distance ¢
between the semicircles is also the distance between the bodies. Label the other waterline
intersections by p; and p. respectively.

We can choose the origin in the z-axis so that these semicircles will coincide with
coordinate o-lines of the bipolar system (o, 7) :

asinh 7 asino
T = mm— Y = ——— (5)
coshT — coso coshT — coso

For this purpose we have to find (see e.g. Morse & Feshbach, 1953) positive constants
by,ds,a such that

a=r_sinhd_=r sinhd,, b,+b.=/¢
b- +r_ =r_coshd_, by +ry =rycoshd,.

(6)

One can easily verify that this system of equations has the unique solut‘ion such that

02 + 20
= . (7
2ry(ry +r- +4)

We can assume r_ > r, without loss of generality, and so d_ < d,. We shall prove
the following .
Theorem Let the set D_ U D, be enclosed between two rays from the points p_ and p,
at an angle 7/2 — S to the vertical. Let also Dy C {[z F (bx + r+)]> + y? < ri,y < 0}.

If the inequality

coshdy —1

02 + 28r_
8
2r (ry +r-+4£) (8)

holds, then the homogeneous (f = 0) problem (1) - (4) has only trivial solutions for all
positive values of the parameter v that do not exceed

2 — cosec’f >

2(2 — cosec?B)ro(ry +r- +4£) — (£ +20r_)

. 9
2mr, [(€2 + 28r_)(€% + 28r_ + 4r {ry +7_ + Z})]% (9)
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Proof

Let F_ be the free surface between the bodies, and F, that outside.

The mapping = + ty — o + i (see (5)) conformally transforms the lower half-plane
into the strip {—7 < ¢ < 0,—00 < 7 < o©}. By the hypothesis of the theorem the
rectangle R = {-~7 < 0 < 0, —d_ < 7 < +d,} is contained in the image of W.
Furthermore, the side {¢ = —7,~d_ < 7 < +d,} is the image of F_ and the side
{o =0, —d_ <7 < +d,} is a subset of the image of F,.

From the boundary-value problem we get, with Green’s formula, the identity

2 — 2
/W | v ul?dzdy = V/F o, el (10)

It is straightforward to show that

1
20y < = 2 / 2
u/F+ Jul :c_2cosecﬂ W|Vu| dzdy _ (11)
and that : +d
V/F_ lul?dz < %ua /—d * |v(=m,7)|*dT

where v(o,7) = u(z,y). Also, we show that

fj:.f lo(=m,7)]Pdr < 2 }ffdd_‘“ [v(0, 7)]2dT + 7 [ |v,,(0',7')|2dadr}
< (12)

2{ /2 lo(0, T)Pdr + 7 fiy | 7 ul*dzdy},
and finally, that

/+d+lv(0 7)2dr < (cosh d -1)/ lu[?dz < ~(coshd 1/ 2dzdy (13
[, PODFdr < (coshdy =1) [ Juf'de < g(eoshds =1) [ |V uldady  (13)

where F§ and W€ are the parts of F, and W external to the semicircles bounding Dy.
Equation (10)-(13) together give

. 1
2 <l 2 2
/ | 7 ul’dzdy < {zcosec ﬂ+A+7rBu}/ | 7 ul®dzdy (14)

02 4 2r_ '
- 4r+(7‘+++ r_+£) and B = a = {R(R+2r,)}"/* where
R=ry(coshdy —1)=2r A If A+ fvr <1 — ; cosec?, there will be a contradiction
in (14) unless \yu = 0 (and so u = 0 since u — 0 as £ — Fo00); this proves uniqueness
provided v does not exceed the value (9).

where A = 1(coshd, — 1)

Discussion

This paper has described the uniqueness proof for a class of problems involving two
surface-piercing bodies. One limit of this is to let r_ tend to infinity, keeping £ and r,
fixed; the resultant geometry involves one body in deep water in the presence of a cliff
(which may have an overhang). A modification of the method of this paper also allows
the corresponding finite-depth nroblem to be studied, and an upper bound on » found for
uniqueness. Further modification allows the problem of two or three bodies in a uniform
depth ocean to be studied, in each case yielding an upper bound on the frequency. It is
hoped other conformal transformation may lead to other uniqueness proofs.
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