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1 Introduction

We consider the trapping of surface water waves above a thin plate, I. In a paper by Linton & Evans {2},
strong numerical evidence is given for the existence of trapped modes above a submerged, horizontal, flat
plate, in finite depth water. The method uses matched eigenfunctions. Here, we treat the case of deep
water, and allow the plate some inclination to the horizontal. The method should also be able to treat
curved plates, although we do not consider them here. The method that we use involves the reduction
of the problem to the solution of a homogeneous, hypersingular integral equation for the discontinuity in
potential across the plate. The trapped—mode frequencies are then given by the existence of a non-trivial
solution to the integral equation.

As with some work carried out on a related scattering problem, see Parsons & Martin (3] and [4], we
approximate the solution by means of a truncated series of Chebyshev polynomials of the second kind,
multiplied by a suitable weight. Collocation then gives a homogeneous matrix equation for the unknown
coefficients. A non-trivial solution is then given by the vanishing of the determinant.

2 Formulation

We choose the mean free surface to be the (z, z)-plane, and take y vertically down into the fluid. We
suppose that the two edges of the plate are parallel to the z-axis. Assuming classical, linear water wave
theory, and time-harmonic motion with angular frequency w, we write

8(z,3,2,) = R{4(z, n)ei=on},
where I is the wavenumber in the z—direction. It is known that trapped modes are not possible for
K(= w?/g) > I, where g is the acceleration due to gravity. If we therefore let K = lcos S, then we see
that ¢(z, y) must satisfy
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d/0n is normal differentiation on I'. For trapped modes, we also require
6, (Vg — 0 as |z| — oo. (4)

The appropriate fundamental solution is
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and Kj is the modified Bessel function of the second kind, of order zero. The fundamental solution

satisfies (1), (2) and (4) and has a logarithmic singularity at P = Q. If we now apply Green’s theorem
to ¢ and G, we find

op) = [ 18125500, (®)

where P is any point in the fluid, and [¢(g)] represents the discontinuity in potential across the plate.
Imposing (3) to (6), and interchanging integration and normal differentiation, gives

fo@ 58 du, =0 per, ™

where the integral must now be interpreted as a Hadamard finite-part integral; see [3] and [4] for further

information on hypersingular integral equations. Qur aim is to find pairs of parameters ! and 8 for which
non-trivial solutions to (7) exist.

3 Method of Solution

For numerical computations, we use the expansion, see Ursell [5],
G(P,Q) = Ko(IR) + Ko(IR,)
+2cot fe~!(r+9) coe B {(x _ B) cosh[I(z — &) sin f] — O, sink[l(z — £) sin B]}

—4cot B Y (~1)™Lm(IR;) cos mO; sin m,

m=1

where z — ¢ = R;sin©;, y+ 1 = RycosO; and

Lo(IRy) = (5‘9;1,(1121))

y=m

This expansion for G may be easily differentiated to find the kernel of (7). To seek a numerical solution
to (7), we first parametrise I'; we may take the length of the plate as 2, without losing any generality.

This gives us l 1
_f) , _
)(1 (s—1)? dt'*'/lf(f)l? (s,8)dt =0,

where L'(s,t) also depends on the angle that the plate makes with the vertical, and on d, the submergence
of the mid-point of the plate. We have also replaced [¢(g)] by f(t). We find that L’(s,t) has a logarithmic
singularity at s = t. More precisely, we have

2
L'(s,t) ~ %lnls—tl as |s — t] — 0.

Thus, we write . 1 l
(1) r _
)(1 Gotp dt + — /_lf(t)ln Is-tldt+/.lf(t)L(s,t)dt =0,

where L(s,t) is now well behaved as |s — t| — 0. As with scattering problems, we now approximate f(t)
with the series

N
f(t) -V 1-1¢2 z:anUu(t),
a=0
where Uy (t) is the nth Chebyshev polynomial of the second kind. The unknown coefficients, aa, are .
then fcund by collocation. This choice of approximation has two attractive properties. First, the square-
root zeros in [¢] at the plate edges have been built into the solution. Also, the integrals containing the
hypersingular and logarithmic kernels can be evaluated exactly. We have,
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and

when n=20
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where s = cos . In the evaluation of this last integral, we have used the expansion

(- -]
lnjs—t|=-ln2-2% -'IIT..(s)T,.(t),

n=1

where T, is the nth Chebyshev polynomial of the first kind. The integrals involving L(s,t) may now
all be evaluated numerically. The only slight difficulty encountered in this method is the evaluation of
Ly (z). We adopt the following scheme. The modified Bessel function, I,(z), satisfies the homogeneous

recurrence relation

2v
I, - Iu+l - ;—Iv =0,

whence differentiation with respect to v, and letting v = m, shows that L, (z) satisfies the second order,
nonhomogeneous recurrence relation

L(m=1) = Lim+ 1) = Z2L(m) = 21(m). | ®)

Here, for ease of notation, we write the order as the argument. To solve (8), we use the Wimp—Luke
method, see Wimp [6], as follows. We generate a solution Z(m) of the nonhomogeneous equation, in
the backwards direction, with starting values

Zy(M+1)=Zy(M)=0.

We then generate a solution Yas(m) of the homogeneous equation; that is, we take I(m) = 0. . This
solution is also found in the backwards direction, with the starting values

YmM(M+1)=0 and Yy(M)=1.
The solution to (8) is then formed by letting

L(0) — Zp(0)
Yu(0)

where L(0) = —Ko. In order to achieve greater accuracy, we can iterate; that is, we take Lp(M) and
Ly (M — 1) as new starting values Zp (M) and Zp(M — 1), and then repeat the above procedure. This
process may be repeated again, until no further improvement is achieved. In practice, provided M is
chosen slightly greater than the maximum value of m required in the summation containing L., and
only one iteration is performed, the results were found to be excellent.

Returning to the problem of finding the trapped-mode frequencies, we have the system of equations,
Ka = 0, to solve, where

Ly(m) = ( ) Yu(m) + Zy(m), 0<m<M+1,

r? 1 — .
Kjn = fa(s;) + 79..(8:-) + ,/ 113U, (t)L(s;,t)dt, sn=0,1,...,N,
-]

a = (ao,ay,...,an)7 and s; are the collocation points. The trapped-mode frequencies are now given
by det(A) = 0, provided that N is chosen sufficiently large to ensure convergence. To look for these
frequencies, we first seek an approximation to them, so that the numerical search may be speeded up.

4 Approximate Solutions

For a horizontal plate, of length 2a, we may use a similar method to that used by Linton & Evans [2] in
approximating the desired frequencies, with some modifications to account for deep water. The method
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uses a wide-spacing approximation. As in the paper mentioned above, we assume that a wave, with
exp(ilz) dependence, is incident from r = —co along a semi-infinite plate, lying on y = d,z < 0. For
values of [ in a certain range, total reflection occurs at the edge of the plate. The reflection coefficient is
related to !, through the equation

R = exp(-2iaa), (9)

where @ = (k? — 1?)} and k solves K = ktanhkd. An explicit expression for R can be found by use of
the Wiener-Hopf technique; a similar problemn with the same geometry was solved by Greene & Heins
[1]. Comparison of this result with (9), then gives approximations to the trapped-mode frequencies.

We intend to compare the wide-spacing approximation with the ‘exact’ numerical results, for a hor-

izontal plate. Having done this, the trapped—mode frequencies can be followed as the inclination of the
plate is varied.
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