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INTRODUCTION

The motions of floating bodies usually are described by six rigid-body modes including translations
(surge, sway, heave) parallel to the Cartesian (z,y, z) axes, and (roll, pitch, yaw) rotations about
the same axes. These modes are denoted by the indices (7 = 1,2,3,4,5,6), respectively. In the
linear analysis each mode can be defined uniquely by a (small) time-dependent amplitude £;(t).

The same notation can be extended to higher-order modes of body deformation (j = 7,8,...).
These may include continuous structural deflections, discontinuous deflections such as the angular
deformation of a hinged vessel, or the motions of an array of separate bodies which are analyzed
collectively as a single ‘global body’. Another application is to represent wall effects in a wave
tank with a truncated array of images; depending on the mode of motion of the original body, each
image must move in a symmetric or antisymmetric manner which can be described by a suitable
higher-order mode of the global array. In heave, where all of the images are in phase with the body,
the entire global array moves in phase as if it were a single rigid body; but in sway (transverse to
the tank axis) the images must alternate in sign, requiring a non-rigid global motion for the array.

In general, each mode may be defined by a vector ‘shape function’ S;(x), with Cartesian components
(u;,v;,w;). The displacement of an arbitrary point within the body; due to the corresponding
mode, is represented then by the product &;(t)S;(x). The vector S; is assumed to be continuous
and differentiable near the body surface S,, with divergence D; = V - S;. The divergence is zero
for each rigid-body mode. The normal component of S; on S, is expressed in the form

n; =S, -n=umn, +vn, +wn, (1)

The unit normal vector n points out of the fluid domain, and into the body.

Corresponding to these modes of motion, generalized pressure forces are defined in the form

9¢
F; = // pnidS = —p// — +1V2 4 gz)n,dS - (2
Sp sb(at 2 ) 9 :
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Here p is the fluid pressure, ¢ the velocity potential, and V' the scalar fluid velocity. In the first-
order analysis the generalized force includes contributions from the added mass, damping, wave
diffraction, and hydrostatic pressure. In some cases second-order forces may be of interest as well.
Each of these is considered in the following Sections.
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FIRST-ORDER HYDRODYNAMIC PRESSURE FORCE

The linear description of the generalized velocity potential and resulting pressure force is a trivial
extension of the rigid-body analysis. It is convenient here to assume time-harmonic motion, with
the unsteady mode amplitude factor £;(t) replaced by the real part of £;e'“*. Corresponding
to each mode there is a radiation potential £;¢,(x), distinguished by the boundary condition
0¢;/0n = fwn; on Sy, the mean position of S. Added-mass and damping matrices are defined in
the form

w?a;; — twb;; = -—iwp/ é;n;dS = -—p/ b5 %ds (3)
- So So an
and the generalized wave-exciting force is
: 9¢;
Xi = —twp $an;dS = —p ¢4 ——dS (4)
So s, On

Here ¢4 is the diffraction (incident plﬁs scattered) potential. The indices ¢ and j can take on any
values within the ranges of the rigid-body modes (1-6) and extended modes (7,8,...).

Green’s theorem can be applied to (3) to establish reciprocity, and to (4) to derive the Haskind
relations between the generalized exciting force and the corresponding radiation potential.

FIRST-ORDER HYDROSTATIC FORCE

The deformation of the body geometry must be considered in deriving the contribution to the
generalized force (2) from the hydrostatic pressure —pgz, since this quantity is of order one. Three
surfaces of integration are defined as follows: The initial wetted surface of the body prior to the
modal displacement S, is denoted as Sy, and the corresponding deformed surface after the normal
displacement in the mode j is denoted as S;. Both are open surfaces, with their upper boundaries
in the plane z = 0. The closed surface I is defined including S;, S5, and the portion of the plane
z = 0 lying between these two open surfaces. On ¥ the normal vector is defined in a consistent
manner, to point out of the enclosed volume V.

With these definitions, the change in the hydrostatic generalized force component F; due to a unit
displacement of the body in mode j is defined by the matrix

Cij = py// znadS-py// zn;dS =pg// zn;dS (5)
Ss So b2}

Using (1) and the divergence theorem,

Ci; = pg '//2 zS; -ndS = pg // . V. (2S;)dV . (6)

For small deformations the volume V is thin, and the last integral can be approximated to first
order as the surface integral of the product of the integrand and the distance n; between the two
boundary surfaces S, and S;. Thus

Ci; =pg // n;V - (28;)dS = pg // '\ n;(w; + zD;)dS (7)
So SO

Here the generalized force is defined in a fixed reference frame, and only the hydrostatic pressure
is considered. As a result, (7) includes some contributions which normally are not considered, such
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as the roll (or pitch) moment due to a sway (or surge) displacement, both of which are equal to
the displaced body volume times the moment arm associated with the corresponding displacement.
Normally, for a freely floating body, these contributions are balanced by the gravitational force due
to the body mass. In the generalized analysis of a deformable body the corresponding mass force
must be evaluated separately, for each mode, depending on the mode shape and mass distribution.
The coefficients (7) depend not only on the normal displacement (1), but also on the divergence
D; and the vertical component of S.

As a simple example consider a floating circular cylinder, of radius r, about the z-axis. The only

nontrivial rigid-body mode is heave and the relevant parameters in (7) are wy = 1, D; = 0, and
n3 = cos, in terms of polar coordinates such that iy — z = re*®. Integrating over the submerged
surface (~7/2 < 6 < 7/2) on r = ry gives the usual restoring coefficient C33 = 2pgr, per unit
length along the z-axis. In addition, define a dilating mode (i = 7) where the shape function S,
1s a unit vector in the radial direction. The divergence of this vector is Dy = 1/r, w; = —cos¥,
and n; = —1. From (7) it follows that C7; = 4pgry, and Cs7 = Cy3 = —mpgro. For a more general
mode shape (i = 7) where the radial deformation is f(6) the corresponding results are

n/2 n/2

f(8) cos® 8d8, Cqp = 2pgr0/ f(6) cos 6d8

-n/2

n/2
Csr = —pgro f f(6)d6, Ci3 = —2pgrg /

-m/2 -n/2

In general C;; # Cj;.

SECOND-ORDER FORCES

Substantial difficulties can be anticipated in evaluating the second-order contributions to (2), fol-
lowing the direct approach outlined by Ogilvie (1983) and also by Lee & Newman (1991). Particular
attention must be given to the transfer of the first-order pressure between the exact and mean body
positions. The following approach avoids this complication.

Define S,; as'the union of the (exact) body surface and the portion of the free surface inside a
fixed control surface S,, which is vertical near z = 0 and intersects the free surface z = ¢ along the
contour C,. The continuous differentiable shape function S; is assumed to exist within the domain
between the body and control surface. Since the pressure vanishes on the free-surface the integral
in (2) may be extended over S,;. After a straightforward extension of the vector calculus outlined
by Newman (1977, page 133),

F; =p //Su [(¢D,~ +8;- V), — (V2 + g2)(S: - n)] ds o
" 9¢ d
-of SrolS mdt— g J[[ o6 mys

Ssy

In the line integral, which accounts for the unsteady upper boundary of S., third-order terms are
neglected and the unit normal n, is directed away from S,;-in the plane z = 0. Hereafter we
consider only the second-order mean (time-average) components of (8), assuming the first-order
motions to be periodic. There is no contribution then from the last term in (8), or from similar
total derivatives with respect to time which are neglected in the following equations.

If ({ = 1,2,6) the divergence theorem can be used to replace the integral over Sy, on the first line
of (8) by an integral over S.. This procedure leads to the well known ‘momentum’ relations for the
mean horizontal drift force and yaw moment.
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A more general result follows from (8) by moving the contour C. in to coincide with the mean
position of the body waterline C,, where the normal is n, = —n.. (Here it is assumed for simplicity
that the body sides intersect the free surface normally.) Since 8¢/8t = —g¢ to first order, the time
derivative of the product ¢¢ has zero mean, and

0 0 :
—pf{,c (s, - m)de = p]{cc ¢22(8i m)de=pg § ¢*(S:-m)de (9)

Cy

The contribution from the hydrostatic pressure in (8) is written as the sum of (A) the surface
integral over S;, defined to be the portion of S, below the plane z = 0 as in (5); (B) the small
vertical portion of S, between z = 0 and z = ¢; and (C) the small horizontal portion of S; between
C, and its mean position. The contribution from (B) is integrated vertically to give (—1) of (9).
The contribution from (C) is written as a contour integral involving the small width (§-n;) of the
free surface between the exact and mean positions of Cj, resulting from horizontal motions of the
body. The time derivatives in (C) can be interchanged, as in the first step of (9), and the body
boundary condition used to evaluate §, - n = d¢/dn. Also in (C), since the normal vector n; is
vertical on the free surface, (S;-n;) = w;.

The resulting expression for the generalized mean force is

Ro=p [[ [(6D:+58:-V8). - 1?5 -m)]as
%o (10)
+ %pgfc ¢2(S; +m,)de — pfc o, w;dl — pg /:/; z(S; +n)dS

Since the integrands in the first three integrals are quadratic, in terms of 4, V', and ¢, these integrals
can be evaluated over fixed boundaries. The last integral in (10) is over the exact body surface,
beneath the plane z = 0. Only the second-order components of this integral should be included. In
essence, what is required in the last integral is the second-order extension of (5). This is nontrivial,
and requires a careful analysis of the mode shapes and their sequence. The attractive feature of
(10) is that it isolates these complications in the hydrostatic component, and obviates the need to
transfer the first-order hydrodynamic pressure from the moving body surface to its mean position.

For the conventional drift force and moment (f = 1,2,...,6) acting upon a body with the same
modes of motion, variants of Stokes’ theorem can be used to confirm that (10) is equivalent to the
pressure-integral results given by Lee & Newman (1991).
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