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Introduction

The need to include nonlinear terms when calculating the wave loading on offshore
structures is well-established, as there are many important effects which cannot be pre-
dicted by linear theory alone. In particular, many authors have considered the numerically
nontrivial task of extending linear theory to second order. The difficulty which arises with
this approach occurs because the second-order potential satisfies an inhomogeneous free
surface boundary condition. Whether this potential is solved for directly, (see eg Kim
& Yue 1988), or simply the second-order forces determined by introducing an auxiliary
potential, (see eg Molin 1979). the resulting calculation usually involves the computation
of a slowly decaying oscillatory integral over the whole of the free surface. The purpose of
this work is to show that for fixed, two-dimensional bodies in monochromatic waves this
computational work may be reduced by writing at least part of the second-order potential
in terms of harmonic functions which are constructed from products of derivatives of the
first-order potential.

Theoretical analysis

A wave is incident from the left on a two-dimensional. fixed convex body which inter-
sects the mean free surface at right angles. The fluid is assumed to have infinite depth and
coordinate axes are chosen such that the w-axis is horizontal and the y-axis points verti-
cally downwards, with the origin positioned so that the body intersects the free surface at
the points (—a, 0) and (a,0). The wave steepness € is assumed to be small and the velocity
potential is expanded in a power series in €. At second-order there is both a steady con-
tribution to the potential and a contribution at twice the frequency of the incident wave.
Vada (1987) showed that the double frequency potential Re[A%w@2(x,y)exp(—2iwt)] sat-
isfies the inhomogeneous free surface condition
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in the usual notation, where Re-[——iQAml exp(—iwt)/w] is the first-order potential. By
interpreting the right-hand side of (1) as a pressure distribution over the free surface,
the method of Wehausen & Laitone (1960) may be used to generate a function which
is harmonic everywhere in the region y > 0 and satisfies the inhomogeneous boundary
condition (1). The second-order potential is then constructed from a combination of this
function and a harmonic function which satisfies the homogeneous free-surface condition
and is chosen so that the sum of the two functions satisfies the condition of no-flow through
the body. However, this approach does not make use of the specific form of the right-hand
side of (1) and it is here shown that part of the particular solution for ¢; may be constructed
from harmonic functions which are products of first-order quantities. This alternative
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method allows the vortex-like behaviour of ¢, at large depths, derived by Newman (1990),
to appear explicitly in the expression for ¢,.
It is convenient to introduce the first-order complex velocity
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(The complex number j is used here to denote the square root of *-1° to avoid confusion
with the use of 7 in the time dependence.) It is straightforward to show, from the theory
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are harmonic functions. Furthermore. a satisfies tho free swuface condition
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From a comparison of the right-hand sides of (1), (5) and (6). it is clear that the function o
may be used in the construction of a particular solution for o;. but it is more appropriate
to consider an integral of /4. Thus, the harmonic function 5 1s defined by
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where R is the first-order reflection coefficient, Im{(a+ib)+j(c+id)] = c+id. 2" = —=L+30
is a point on the free surface to the left of the body and the contour of integration is
horizontally along the free surface from the point ' = —L and then vertically downwards
to the point z, passing around part or all of the body contour as necessary. After some
manipulation, ¥ may be written as '
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for points (z,y) which are not below the body, where H (=) 1s the Heaviside function
and an application of Cauchy’s theorem has been used to express an integral around the
body in terms of far-field quantities. It is straightforward to show that v satisfies the free
surface condition
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Motivated by the form of the right-hand side of (9), it is convenient to introduce the
harmonic function

A=

2
where = rsinf and y = r cos 6. This function is derived from Ursell’s wave free antisym-
metric potentials (1949) and satisfies the free surface condition
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Thus, from (5), (9) and (10). ¢y may be expressed as
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where y7 is a harmonic function which satisfies the free surface condition
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The specific combination of «, 4 and ) is subtracted out from ¢, so that the remaining
potential y2 satisfies an inhomogeneous free surface condition. the right-hand side of which
decays to zero as || — oc. It is the nondecaying forcing on the free surface which produces
the leading order behaviour of ¢, at large depths. shown to be vortex-like by Newman
(1990). As o and 5 decay to zero as y — oc, this dominant behaviour appears explicitly
in the representation of ¢, in (12) as a multiple of the line vortex potential \.

Discussion

The representation for ¢, in (12) does not yield a particular solution for ¢, which
- satisfies the total inhomogeneous free surface boundary condition in (1). However, further
progress may be made if ¢; may be expressed as an expansion in multipole potentials. In
this case, @; satisfies
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and
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where an, and by, are constants. (The series in (15) may not converge on y = 0 at ¢ = «
as there is a possible logarithmic singularity in 8%¢;/d2? at this point.) For illustrative
purposes, it is convenient to consider the construction of a harmonic function u which
satisfies '
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and decays as y — oo. In order to construct such a function. it is instructive to observe
that if f(a + 1y) i1s an analytic function of = + 7y and ¢g(z — 7y) is an analytic function of
x — 1y then the function f(a + i1y) + g(x — ty) is harmonic. Thus, it may be shown by
substitution in (16). that a particular solution for v is given by '
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where the coefficients ¢,, satisfy the recurrence relation
3Kcy —i(m - 1)Cm—1 = by, CNe—) = iI)A\'/(*Ky - 1). (18)

Numerically, the coefficients ¢,, should be determined using backward recurrence to en-
sure that they do not become too large. Similar procedures may be adopted to generate
harmonic functions which satisfy other relevant free surface boundary conditions and the
choice of whether the function should depend on x + iy or ¥ — iy or a mixture of both
is determined by the need to ensure that the functions decay as y — oc. This work is
ongoing.
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