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1 Iﬁtroducﬁion

The subject of this paper is an efficient, Schwartz—type, iterative method for computing free surfuce lows. Tn
particular, the steady 3-D potential flow around a subinerged body moving in a liquid of finite constant depth
is considered. The motion is described in Cartesian coordinates which are fixed with respect to the body.
The a-axis poiuts opposite to the forward direction, the y-axis points sideways and the = axis is dirceted
vertically upwards. Let the depth of the liquid be d, the speed of the body be 7 and the acceleration of
gravity be g. The physical quantitics arc scaled by the length d and the velocity /gd. We split the velocity
potential, ¢, into a free stream potential and a perturbation potential, ® = pw + ¢, here jo = 17/ /yd is the
Froude number. .

To construct an efficient iterative method to solve this indefinite problem, we decompose it into two,
mathematically simpler subproblems. Then we iterate between these subproblems and at convergence, the
solution to the original problem is given as the sum of the solutions to the subproblems.

This problem can be solved by deveral existing technicues, eg. the boundary integral method described
in [2] or the hybrid finite clement amcthod in [4). The aim of the rescarch described here is to take a step
towards solving the problem where cllects of vorticity an viscosity are taken into-account in the region close
to and in the wake of the submerged body. Another important reason was an accurate solution of the 3-D
nonlinear potential problem, where the boundary integral method is known to depend on the addition of
artificial dissipation at the free surface boundary.

2 The Subproblems
The perturbation potential is governed by:

Apg=0, —o<a<on —0<y<oo, —1<z<0, (1)
together with the boundary conditions

pipee+¢: =0, —00< 2 <20, —00 <y <00, z=0,

s

s =0, —oK <o, —oo<<y< oo, 2= -1, (2)
9¢/0n + poos0 = 0, on the body.
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Here, 8/0n denotes the outward normal derivative and 0 is the angle between the normal and the z-axis.
We are looking for a solution where the perturbation potential tends to zero at large distances in front of
the body. This condition is called the upstream condition,

lim ¢=0, —oco<y<oo, -1<:<0, {3)

L=t = 00

For the two-dimensional counterpart to the present problem, the most efficient solution approach is
probably a direct method, cf. [5]. However, due to memory and work requirements, it is not possible to use
a direet method to solve the three dimensional probleni. The problemn (1-3) is indefinite, which makes tie
convergence of most iterative methods unstable. To circumvent this difliculty, we decompose the probicmn
into two more easily solvable subproblems and form a Schwarz-type iteration between these subproblems to
solve the original problem.

The first subproblem, which will be refered to as the definite subproblem, is defined by

Al =0, =0 < 2 < o0, -0 <y< oo, —1 <2 <0. (4)
together with the boundary conditions
cf)i =0, —xo<r < —o<y< o, =0, (5)
¢§ =0, ~x <<, ~o<y< 20, r=—1, ()
¢’ Jon = h, on the body. . (7)

The second subproblem, which will be called the indefinite subproblem, does not have a subnierged body
in the interiour of the domain. It is governed by,

Apl =0, —o < v < x, o0 < y< oo, =l <<, (3)

subject to the boundary conditions
P 4 gl =1 —oo < r <, —oe <y < o0, 2= 0, (9,
d)i’ =0, ~x <<, —xX<y< o 5= —], (10)

To fix the undetermined constant in the subproblems we enforce upstream conditions similar to (3).

The first subproblem is definite and can therefore be solved by standard iterative methods, see §5. The
sccond subprobleny is indefinite but has no body. It is therefore casily and cfficiently solvable by separation
of variables, see §6.

3 The Iterative Cycle

The solutions of the subproblems are well defined once the forcing functions h and ¢ are determined. 1t is
clear that ¢/ + &1 will solve (1-3) if we can find functions ¢ and & that simultaneously salisfy ((x,y) =
—1i2¢! (2, y,0) and h(xy, m, 5p) = =peos 0(ay, yy, z) — 007 JOn(xy, yi, 1), where the boundary of the body
is described by x, = (s, u), yo = w(s,u), = 5(s,u), 0 < s < 1,0 < u< 1. We compute h and ¢ by
iteration. The initial guess is taken to be ¢//("(x,y, 2) = 0 and iterate according to
Lo Set 20,y =) = —pcos 0y, g, =) — O’ 1=V /am ey, yi, 1) and solve the definite subproblem for
4,1(:?)‘

2. Set ) (z,y) = _,1.'-'4)1,&,”(;(:, ¥,0), and solve the indefinite subproblem for ¢//(®).

We have proven that the iteration converges for sufficiently small Froude numbers. In order to demon-
strate the convergence numerically, we truncate the infinite domain in the z- and the y-direction and intro-
duce farfield boundary conditions to carry out the practical computation. Finally in §7 we present numerical
results for a second order accurate discretization of (1-3). We show that the iterative method converges
rapidly. We also verify numerically that tlie convergence rate is essentially independent of the grid size.

4 Truncation of the computational domain
To limit the computational work we truncate the computational domain in the z- and y-direction to: —b <«
x < b, —a <y < a, where @, b arc positive. For both subproblems we enforce solid wall boundary conditions

for y = =%a, ic. we are considering flow in a canal. For the definite subproblem we apply approximate in and
outflow be's at & = &b and for the indefinite subproblem we prescribe exact in and outflow be’s at 2 = £b.
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5 Solving the definite subproblem

We discretize the definite subproblém by second order accurate central finite differences using a composite
overlapping grid. To apply this technique, we divide the domain into simple overlapping subdomains and
cover each subdomain with a component grid. The subdomains attaching to the body are covered with
bodyfitted curvilinear grids and the surrounding sca is covered with one or several Cartesian grids. The
main advantage with this method compared to discretizing the whole domain with onc single grid is thiat
each component grid can be made logically rectangular and without singularities. The component. grids can
be constructed almost independently of eachother.  The restrictions are that the component grids need to
overlap cachother sufliciently where they meet and the union of the component grids have to cover the whoic
computational domain. The gridfunctions on the component grids are coupled by continuity requircineiis,
which are enforced by applying sufficiently accurate. hu this case quadratic, interpolation relations betwoee
the gridfunctions at the interiour houndaries where the component grids overlap. We use the fortran software
package CMPGRD to construct the composite grids. A comprehensive description of this approach for a
related problenm is given in [5],[6].

‘The resulting lincar system of equations is solved with the BCG method, using the CGES solver. This
method requires of the order Q(n'/®) operations where n equals the number of used gridpoints i the
composite grid.

This subproblem could easily be solved using houndary integral methods and a fast iterative solver.

6 Solving the indefinite subproblem

"T'o solve the indefinite problem (8-10) we use Fourier transform in the y-direction, then we separate o and ¢
variables. This gives us a number of second order linear ODIE’s in a0 which we diseretize using sceond order
accurate central finite differences.

The character of the solution to the defimite problem is smooth and local, whercas the solution to the
indefinite problem contains downstream waves with ‘a refatively small wavelength. Therefore, we utilize a
cartesian grid with finer gridstep that covers a larger w-interval to compute the solution of the indefinite
subproblem, The ocenring Lridingonal systems of equations are solved by the subroutine DNBSE i the
SLATEC package. The work needed Lo obtain a solution to the indefinite subproblem is of the order Oy ),
where ng is the product of the number of gridpoints in the discretization of one ordinary dilferential equation

and the number of terms we retain in the series expansion. This ny is of the same order as the number of

unknowns in the definite subproblem.

7 Numerical examples

To validate the iterativé method we have studied a number of test cases. As a test body, we used a sphere
with radius 1/6. The center of the sphere was submerged 0.5 below the free Surface. The Fronde number
for these computations is: g = 0.4 unless anything clse is mentioned.

To cheek the nplementation of the method and see that the discretization error is of sccond order, we
compare the computed discrete solution for three different gridsteps 30, 2/ and fvin table 1, the values are
normalized by |9nleo [l nars. We elearly see that the solution is sccond order accurate. (RMS here denotes
the usual root-mean-square norn ic. the discrete Ly norm)

[ table 2 we show the number of iterations needed to decrease the relative increment in cach step of the
iteration to 1.1~ 05 for the gridsteps I — W2h, We see that the convergence rate is only weakly dependent
of the gridsize. ' :

‘ Absolute Norm | RMS Norm ]
b3 — On 1.3E-01 1.7E-02
b — dn 4.9E-02 6.5E-03
acc. order 2.0 2.0

Table 1: Accuracy test, the differences are normalized by ldn)oo
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Froude Number (p1) | Cp Havelock | Cp present
0.40 3.5E-02 3.2E-02
0.45 4.8E-02 4.5E-02
0.50 5.8E-02 5.7E-02
0.55 6.0E-02 5.9E-02

Table 3: Coellicient of drag ,Cp, comparison

gridstep | nr. of iterations

22 7

2h 7
V2h 8
h 9
Table 2: Number of iterations for convergeuce for different. gridsteps
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Figure 1: Relative increment at each iteration (p = 0.4). .

Furthermore, in figure 1 we show the max-norm of the relative increment at each iteration. We clearly
see that the convergence is linear and fast.

To ensure that the iterative method gives the same solution as other methods, we compare the coeflicient
of drag (C'p) with computations made by Havelock (3], 1931, in table 3 where he computes the flow around
a submerged sphere. The coefficient of drag is defined by:

Com§ 2wt of 6105
bhody .

We see that there is good agreement with the previously computed Cp's.
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