A REALIZABLE FORCE FEEDBACK-FEEDFORWARD CONTROL LOOP
FOR A PISTON WAVE ABSORBER

C. Maisondieu, A. Clément
Laboratoire de Mécanique des Fluides - division Hydrodynamique Navale
CNRS URA 1217, E.C.N, Nantes, FRANCE

We consider the problem of the absorption of 2D water waves by the horizontal mo-
tions of a vertical plane in response to the hydrodynamical force it experiences. The so-
lution of this problem is straightforward in the frequency domain. Unfortunately, the

transposition of the frequency domain solution to the time domain by inverse Fourier

transforming leads to a non-causal impulse response function. Thus it cannot be used
just as it is, neither as a control loop for physical absorbing devices, nor as a non ra-
diating boundary condition (NRBC) in numerical modelling. In this paper, we propose a
method to derive causal approximations of this ideal controller. Two time-domain ab-
sorbing relations are proposed, differing in whether or not one knows a dominant fre-
quency of the incident wave train to be absorbed. Their performances are compared
with the absorption efficiency of the low frequency asymptotic Sommerfeld relation
which simply reads, for such a piston device: U(t)=F(t)

IRANSFER FUNCTION AND IMPULSE RESPONSE OF THE IDEAL WAVE ABSORBER

Let @;eif2t be the complex Airy velocity potential of the incident left-going wave
train (see Fig.1), &, =%%ﬁé“’-x , and Ppei“¥ the potential of the corresponding
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cal quantities being nondimensionalized using the constant water depth # and the
gravity acceleration g as usual.

(right-going) reflected wave: ®p = e~MX with: 2 the frequency, y the steep-
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When a time harmonic motion is 0 A :
imposed to the paddle with a given >X
velocity law: u(n) = ®{u.e**} , a right-going : ult) <~ O, incident

wave train deriving from a the radiated > ~_ > & reflected
velocity potential @, is generated in D

the basin. The induced linearized o O radiated
hydrodynamic force acting upon the the Figure 1: principle of dynamic absorption
paddle surface is simply derived by integrating the dynamic pressure p=-®, from the
bottom (Y=-1) to the free surface (¥=0). The radiation force then
reads: Fre'®=[N(Q)+iMEQU e  where:
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In the linearized approach we use, the total potentiel is the algebraic sum of the three
above mentionned components: #r=a;+®p+or and the total force upon the pad-
dle: Fr & = {F1+ Fp+[N(Q)+iM@)W}&*
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The complete absorption of the incident wave train requires the velocity U to be such
that, at least at a certain distance 4 from the paddle, the reflected waves and the prop-

agating part of the radiated wave cancel each other. Let us denotes by { the optimal
complex value (amplitude and time phase) of the piston velocity U leading to this ideal
result. Thus, for every given frequency @, we can determine the complex transfer
function H(iQ2) of the ideal wave-
absorber controller which would
give access to the optimal velocity
from the knowledge of the
measured hydrodynamic force:

HGD) = U(in) - 1
F(3iS2) N(£2)-iQ2M(R)

paddie
. . = \velocity U
This may be considered as the

transmittance of the feedback
branch of the open loop system
described on fig. 2. The real and
imaginary parts of H(iQ2) are
plotted on fig. 3. This feedback
controller being linear and time
invariant, the classical theory of LTI systems results in that its impulse response
function k() is the inverse Fourier transform of its transfer function in the frequency
domain. Then, its output in the time domain () is given by the following convolution
integral:

radiation
N+ QM

Figure 2: non causal force feedback control

(1) = ff(r)h(z— 7)dz, where f1) is the time varying hydrodynamic force. On the figure 4,

we have plotted () and #*r) which are the inverse Fourier transform of H(i22)and its
complex conjugate:H*(if2). As one can see, k(1) is "anticausal” (i.e h(t)=0; 20), while #*(t)
which is by construction its symetric with respect to the time variable is causal.

Refering to the convolution integral above, that means that the calculation of the op-
timal velocity i) to be given to the paddle to perform the total absorption involves all
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Figure 3: Force-to-Velocity transfer function of the Figure 4: direct and retrograde impulse response
ideal piston wave-absorber functions of the ideal wave-absorber.

the future values of the input f(1), and none from the past ! In other words, for a given
geometrical deformation mode of the vertical cut, we allways may derive the transfer
function of an ideally wave-absorbing controller, but we cannot practically realize it.
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BEALIZABLE APPROXIMATIONS OF THE IDEAL WAVE ABSORBER

MmumLmt_(LMMg‘ On figure 3, we can see that in the low fre-
quency range (i.e 0<Q<1.), the phase lag between force and optimal velocity is negligible
while the gain remains in the range: 1.<lH(if)<12.Thus, a very first rough approxima-
tion of a time domain absorption relation between measured force and velocity stands
in the limit relation: @)= s() . This is nothing but the well known Sommerfeld rela-
tion between local pressure and normal velocity [see Orlanski (1976)], integrated from Y=-1
to v=0; it is exact in the limit2 — o, because of the cancelation of the radiated near field
and of the transformation of the 2D flow into a monodimensional one. As a logical con-
sequence, the performances of this absorption relation are very good in this frequency
range, as we shall see later (Fig. 7).

Decomposition of the transfer function: The inverse Fourier transform k() of the
function k(i) defined below can be shown to be the sum of a
KG) =1+ NED- QM) - causal function p(1), and an even function of time ¢(1) (fig. 5). The
N(@)+i2M() relation between the optimal velocity U and the force F becomes,
in the frequency domain: U = P(i)U + QiU - H*(i)F . In the time

domain, assuming the fluid to be at rest for <0, we have by Fourier transforming:
The first two terms calculated from i)
may be regarded for the whole system as
a feedforward control loop with a non-
causal part due to the symetry of q(:) with respect to =0; the force feedback term is now
causal due to the complex conjugation in the frequency domain. The motion controller
_is not yet realizable, but a substancial step has been made toward this goal with the
- decomposition we _propose. At the present stage, no approximation has been

1 To Ky introduced, and the instant velocity
] : o —q defined by the above relation is allways
i \o Lo PlY the optimal one in that sense that, if we

were able to compute it at time ¢ from
the knowledge of the past, it would
absorb 100% of any incident wave train.
We shall now propose two different
causal approximations of g¢() and

evaluate the absorption performance
Figure 5: impulse responses of the feedforward loop. they result in.

t - t
ii(t) = j pt - D(T)dT+ j q(t - D(t)d - j K (- Df (Tt

Purely Unsteady Feedback-Feedforward (PUFF)
causal approximation, The sharp3shape of the even

function ¢(z) around the origin (fig. 5) suggested us to 4
approximate it by a Dirac & function, and write:
(=08, From energetic arguments, the weight a

was set equal to the surface under ¢() which is itself
equal to 0(0). The absorption rela’aon is then given

by Figure 6: Feedback-Feedforward control
‘This absorption mode is said to be purely
“(‘)“"— .f p(t - DU(dT - J K@-Df(Ddt| ynsteady because, as the LFL mode, it does not

require any spectral knowledge of the incident
wave train.
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] : pe ausal a ximation, In this
second approach, the incident wave train spectrum is assumed to present a known
dominant frequency o. In that case, the coefficient a of the PUFF relation may be tuned
to the exact real value Q(i») of the frequency domain transfer function previously

defined. The FDFF absorption relation is the same as the PUFF relation above after the
substitution: a - Q(iw).

Results: These absorption relations are implemented in a "2D linearized numerical
wave tank". At one end, a piston

1.0 wavemaker generates a short wave train

o consisting in a monochromatic harmonic

N¥ : wave modulated by a linear up and down

0.6 RN S ramp window. The motion of the opposite

R\ . M .

S ' \\ piston end, initially at rest like the fluid

PUFF itself, is deduced from the absorption laws

02 \\ o studied herein in response to the total

0.0 il hydrodynamic force. The measured wave
0.0 1.0 2.0 3.0 4.0 8.0 . . . o

Frequencyq amplitude absorption coefficients are

plotted on fig. 7. They have to be squared
in order to obtain the corresponding
energy coefficients. It is clear from this
figure that the purely unsteady feedback-feedforward method brings only a little
improvement with respect to the low frequency limit; the price to pay in terms of
numerical sophistication seems to high for the result.

On the other hand, this kind of control scheme is very promising and give excellent
results as soon as one can identify a priori a dominant frequency in the incident wave
train. This conclusion agrees with the results of preceeding studies about non
radiating numerical boundary conditions for unsteady water waves simulation (e.g Lee
and al.). When the flow is purely unsteady, the relation we propose gives better results
than Milgram's one, and is not time variable as the Orlanski's one implemented by
Lee and al., Jaganathan, ... Finally, we are convinced that more a efficient relation
remains to be developped in that case, for medium to high frequencies.

Figure 7: absorption efficiency (amp. ratio)
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