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Summary

Computational results of the complete second-order solution for three dimensional bodies oscillating
about their mean positions are presented. Green’s integral equation is solved for the unknown
second-order velocity potential on the hody boundary. From the solution of this equation, the
second-order pressure on the body and in the fluid domain, and the second-order wave elevation
are computed. The forces obtained by direct pressure integration over the bodies are compared
with those obtained by indirect approach using assisting potential.

Formulation

Following the notation of [1], F, denotes the second-order potential force, 'I>(,2) and é(sz) the second-
order incident and scattered wave potentials, Qp and Qr the forcing on the body and free surface
and G(x;§) the Green’s function of sum- or difference- frequency.

As is shown in [1], §(52) on the body boundary is obtained as the solution of the following Green’s
integral equation,
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From the same equation, when 27 is replaced by 47, we obtain ‘I’?)(x) in the fluid domain and on
the free surface.

The second-order force is the sum of the quadratic force and F, given by
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where &) = Q(Iz) + Q?), p is water density, and n denotes the normal vector out of fluid.

Finall 7, the second-order wave elevation n(?) is obtained from

1,08 1 1981 928(1)
2 _ _1 logn) e _ 202 0°® 3
7 P TR N i TR T 3)

61




Computational method

The major computational task for the second-order solution is the efficient and robust evaluation
of the integrals on the right-hand-side of the equation (1).

Free surface integral:

In our earlier works ([1] and [2]), we divide the free surface into two regions separated by a partion
circle ‘b’. The radius of ‘b’ is large enough so that we may neglect the evanescent modes in the
outer region.

In outer region of the free-surface, both Green function and the first-order potentials are expanded
in Fourier-Bessel series. Due to the oscillatory behaviour of the Bessel functions with respect
the order, the series is slowly convergent for large values of wavenumber and ‘b’. The number
of terms retained in the series increases with the wavenumber and ‘b’ and should be determined
carefully. It is necessary to include up to the order of 64 in our computation for a typical tension-
leg platform (TLP). After integrating the trigonometric functions with respect to the angular
coordinates, the free-surface integral reduced to summations of line integrals in radial coordinates

which are evaluated based on the adoptive numerical integration in complex plane as is described
in [1].

In the inner region, the free surface is discretized with panels and the mid-point rule is applied
using the value at the centroid of each panel. The integrand of free surface integral is, especially
at sum frequency, highly oscillatory with several dominant frequencies (the existing quadratures
for the highly oscillating functions are in general developed for a single dominant frequency). Due
to this property of the integrand and the required large radius of ‘b’ as the water depth increases,
the number of panels on the free surface can easily reach 0(10000). As an effort to reduce the
computational burden, we further subdivide the inner region into two parts separated by a circle
_of radius ‘a’ which barely encloses the bodies. The free-surface inside this circle is discretized with
panels as before. Qutside this circle, in the annulus between the circles of radii of ‘a’ and ‘b’, we
adopt Gauss-Chebyshev quadrature in the azimuthal direction and Gauss-Legendre quadrature in
the radial direction.

Body surface integral:

For floating bodies, the normal velocity on the mean body boundary, @, is substantially more
complicated than that of the first-order. As is derived in (3}, it takes a form
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where £ and a are the translational and rotational displacements, respectively. H is a matrix
containing the quadratic contribution of a to the rotational matrix. The first term of equation
(4) leads to the second-order scattered potential for fixed bodies and the rest of Q@p is associated
with the motion of the body. The accurate evaluation of the double spacial derivative on the body
surface in the last term may be difficult when we use the low order panel method. Instead, we
recast the body surface integral involving double derivatives into the following form using various
vector differential formulas:

// G{n- (£ + a™ xr). V]V }dS =
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// [n- (€7 +a® x 1))(VED . VG) + G{n- [(VED . V)(EM + o) x r)]}
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(1)
~Z 16 +a® x1)- VG + n- {V x [VEO) x G(EM +al x £)]}ds (5)

The last integral can be replaced by a line integral along the waterline by Stokes theorem.
// n-{Vx[Ve") x G + aV) xr)]}dS = / G[VEM x (M +aV) x r)].dl (6)
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Computational results

The numerical examples illustrating techniques for the free surface integrals are for the Snorre
TLP with four columns of radius a = 12.5m, spacing 76m between column axes, and draft 37.5m.
In Figure la, we plot the integrand of the free-surface integral along the circle of radius 300m.
The first-order incident wave frequencies are w; = w, = 1.325. Figure 1b shows the convergece
of the integration using Gauss-Chebyshev quadrature. Figure 2a shows the variation of the inte-
grand in radial direction between 100m to 300m after the integration in angular coordinate. As
is shown in Figure 2b there are several dominant frequencies in the vicinity of the linear combina-
tions wavenumbers of two first-order incident waves and an assisting potential. Table 1 shows the
comparison between Romberg integration and Gauss quadrature for three different combinations

of the first-order incident wave headings.
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Figure la and 1b. Variation of the free-surface integrand in angular coordinate and the relative

error of the integrated value. -
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Figure 2a and 2b. Variation of the free-surface integrand in radial coordinate and it’s Fourier
component.

63




N Romberg N Gauss

B 00 045 090 00 045 090
257  334.44 66.72 294.50 53 754.00 2457.29 1508.29
513  335.04 62.42 290.84 65 334.88 62.54 290.78
1025 335.05 62.43 290.82 75 334.96 62.39 290.81

Table 1 Comparison between Romberg and Gauss-Legendre. 3 is wave heading and N is number
of points computed between 100m to 300m.

The second-order surge and heave forces on a floating hemisphere of radius @ = 1 in water of depth
3 are computed by direct and indirect approach and compared with the result in [4]. Integration
over the free-surface is performed by the mid-point rule. Partition radius b = 3 and 400 panels and
1800 panels are distributed on one quadrant of the body and the free surface, respectively. The
heave force for Ka= 1.2 and 1.6 is significantly affected by the effect of the irregular frequency.

Additional computational results for a hemisphere and for a TLP will be presented at the workshop.

Surge
Ka 1.2 14 1.6
1.2 1.108 1.078 1.067  1.035 0.977 0.948 0.980 0.910 0.879
1.4 0.974 0.899 0.857 0.924 0.843 0.806
1.6 0.888 0.801 0.778
Heave
Ka 1.2 1.4 1.6
1.2 2.262 2.191 2.338 1.841 1.798 1.866 0.871 1.800 1.632
1.4 A 1.617 1.451 1.516 1.397 1.341 1.372
1.6 1.384 1.335 1.383

Table 2 Second-order forces on a floating hemisphere. Uppef matrix is the surge forces and lower
matix is the heave forces. First columns are forces by indirect approach, the second by direct
approach and the third from [4].
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