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1 Introduction

The structural part connecting the two hulls of
a catamaran is often referred to as the wetdeck.
Slamming against the wetdeck influences the
global motions of the vessel (Zhao and Faltin-
sen [1992]) and causes local and global hydroe-
lastic effects. In this paper we will study the
local hydroelastic effects by considering a hori-
zontal elastic plate that is forced with constant
velocity through the crest of a regular wave sys-
tem. Slamming against rigid two-dimensional
bodies has for instance been studied by Wag-
ner [1932], Zhao and Faltinsen [1992],(1993], and
Cointe [1991). Meyerhoff [1965] studied slam-
ming on elastic wedges penetrating an initially
calm free surface by extending Wagner’s theory.

2 Theory

The wetdeck is modelled as a two-dimensional
beam with length Lp corresponding to the
length between two transverse stiffeners. Lo-
cal deformations of the plate field between the
longitudinal stiffeners is a 3D effect which is not
covered by this approach. The coordinate sys-
tem, definition of the beam as well as the wave
envelop are shown in Figure 1.

The x-axis is pointing toward the stern of the
catamaran, the y-axis is pointing toward the

beam * Lg/2

Figure 1: Local coordinate system.

starboard side and the z-axis is pointing up-
wards. The waves are propagating in the posi-
tive x-direction. The reference frame zz is mov-
ing with the phase velocity of the waves so that
z = 0 corresponds to the wave crest. Vertical
velocities due to the waves as well as gravity
eflects are neglected. The flow is assumed sym-
metric about £ = 0 and the beam is simply sup-
ported at the transverse stiffeners. In addition;
the vertical velocity V in the slamming region
due to global ship motions is assumed constant
in time.

The 2-dimensional beam equation is set up by
assuming small deflections w(z,t). Axial force
effects, shear deformations as well as rotatory
inertia effects are neglected. The properties of
the beam are assumed constant along its length.
w(z,t) is expressed in terms of "dry” normal
modes: :

w(z,t) = 3 an(t)¥n(2) (1)
n=1

where a,(t) and ¥,(z) are the principal coor-
dinate and the eigenfunction of the n’th vibra-
tion mode; respectively. t is the time variable.
Multiplying the beam equation with the eigen-
function ¥m(z) of an arbitrary mode m and in-
tegrate over the beam, one obtains the modal
beam equation of mode m:

[Ma&,,.(t) + EI - ap(t) (%;’5)4] 7 ¥2,(z)dz
-2

e(t)
= / p(2,w, O)fm(z)dz (2)
-¢(t)

where Mp is the mass per unit area of the beam,
EI is the bending stiflness, p is the hydrody-
namic pressure on the beam and 2¢(t) is an ap-
proximation of the wetted area. Dot stands for
the time derivative. As indicated in equation
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¢=0
dpdz=Ve (x,t)
Figure 2: Simplified hydrodynamic slamming
model.

(2) the pressure p is also dependent on the de-
flection w(z,t).

- The pressure p is obtained by solving a hydro-
dynamic boundary value problem (HBVP). In
order to solve this HBVP one needs to define an
inner (Wagner’s analysis [1932]) and an outer re-
gion. The inner and the outer solutions can be
matched in the same way as shown by Cointe
[1991]. Here; only the outer solution is consid-
ered. Assuming ideal fluid, there exists a veloc-
ity potential ¢ which satisfies Laplace equation
in the fluid domain. Boundary conditions are
¢ = 0 on the free surface and %f = Ve(z,t) =
V + 1u(z,t) on the wetted surface. The bound-
ary conditions are transformed to z = 0. V,.(z,t)
is called the effective velocity. It can be shown
similarly as Cointe [1991] did that p can be ap-
proximated by the ”-p%f” term in Bernoulli’s
equation. The HBVP causes a singular pressure
near the edges (z = +¢(t)). Assuming small an-
gles between the body and the free surface near
the edges this singularity will match the inner
solution.

Three different methods have been used to solve
the HBVP described in Figure 2. The two first
methods are analytical solutions where the sec-
ond being a simplified analytical solution. The
third method is a boundary element method.
Each of these approaches will now be discussed.

In the first analytical method the flow is ex-
pressed in terms of a vortex distribution on the
wetted surface of the beam. The vortex den-
sity ¥(z, 1) is solved by an integral equation (See
page 180 in Newman [1977]) and is derived in an
analytical form. The effective velocity on the
wetted surface is rewritten in terms of a Fourier
series:

Ve(8(z,1)) = Ao(t) + 3_ Aze(t) cos(2k8) (3)
k=1

where Ao(t) and A5 (t) are Fourier coefficients
and 0 is the transformed variable on the wetted
surface (z = c¢(t)cosf). An analytical expres-
sion of the hydrodynamic pressure on the beam
is developed. Then the modal total force de-
scribed by the right hand side of equation (2)
can be rewritten as:

e(t)
/ P2, m(2)d2 = Fugem(t) (4)
-c(t)
= 2 Bmn()in(t) = 3 Amn(t)in(t)
n=1 n=1

where Fezem(t) is the modal excitation force
which may interact with the global ship motions
and By, (t) is the coupled modal damping coef-
ficient which is proportional to the time deriva-
tive (252 of the wetted surface. Apmn(t) is the
coupled modal hydrodynamic added mass. The
two last terms of equation (4) are defined as the
modal damping force and the modal added mass
force; respectively. Equation (4) indicates that
there are interaction effects between all the vi-
bration modes. The modal damping force and
the modal added mass force are moved to the
left hand side of (2) when integrating the set of
differential equations numerically. This ensures
the numerical stability of the time integration.

The second method is an analytical approach
where one assumes that the vertical velocities
due to the beam vibrations are constant in space
on the wetted surface of the beam. The so-
lution of the velocity potential is the classical
solution for a flat plate with heave velocity in
infinite fluid (See for instance page 122 in New-
man [1977]). In the same way as described by
equation (4) the modal total force on the beam
is decomposed into different force terms.

In the boundary element method the velocity
potential is expressed in terms of Green'’s sec-
ond identity. This formulation breaks down
with zero plate thickness. The geometry of the
flat plate is therefore modelled as a diamond
with height to length ratio 0.01. The numerical
method predicts the slamming force on a rigid
flat plate with relative error 1%. For the hydroe-
lastic part the following difficulties occurred: a)
Decomposition of the total hydrodynamic force
on the beam b) Convergence problems. Each of
these problems will now be discussed. It turned
out to be difficult to decompose the total hy-
drodynamic force on the beam into excitation,
damping and added mass terms as illustrated by
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equation (4). In particular we did not manage to
identify the damping terms. This implies that
way we could not move the hydrodynamic added
mass and damping terms to the left hand side
of the equation system. Two reasons are pro-
posed to cause the convergence problems. As
a consequence of a) the right hand sides were
large compared to the left hand sides in the
set of differential equations. This may cause
numerical instabilities in the time integration.
In the boundary element method the structural
and the hydrodynamic parts were not solved si-
multaneously since an iteration for the solution
was carried out at each time step. It is believed
that this also may cause numerical instabilities
in the time integration. Due to these problems
the boundary element method was unsuccessful.

How to obtain the wetted area 2¢(t) in the outer
solution will now be discussed. Following Wag-
ner’s analysis {1932], half the wetted area is the
solution z of the integral equation:

m(e) = [ ["’l’f:;’-‘-)—(V-»w(z,t))] dt (5)

where 1, (z) = (a(1 - cosvz) denotes the air-
gap between the beam and the wave envelop.
Here v is the wave number and (, is the wave
amplitude. %‘f is the vertical velocity outside
the wetted part of the beam along z = 0. Inte-
gral equation (5) was solved numerically in the
analytical method as well as the boundary ele-
ment method and expressed analytically in the
simplified analytical method.

3 Results and discussion

The set of second order differential equations
described by equation (2) is simulated in time
by using a fourth order Runge-Kutta integrator.
Linear structural damping £,, is implemented
in the numerical formulation and added along
the diagonal of the damping matrix. Aluminium
is selected as the beam material in this study.
Input data of the simulation are shown in Table
1. Acoustic effects are taken into account in
an approximate way in the initial phase of the
impact. Cavitation is not considered, but could
actually occur for high impact velocities.

Figure G shows the total hydrodynamic force on
the beam as a function of time. The total hydro-
dynamic force is identical with the modal total
force in equation (4) when ¥, = 1.0. The fig-
ure also includes the total hydrodynamic force

| Description Unit T Value

[ Area inertia [ m*/m] ] 0.000011
Mass Mg kg/m*] | 36.6
Beam length Lp m| 1.5
Eigenmodes N - 30
Time step dt s 0.000001
Wave period T,, s 5.7
Wave amplitude ¢, m] 2.0
Fall velocity V m/s] -6.0
Structural damp. &, 1] 0.01

Table 1: Input data.
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Figure 3: Total hydrodynamic force on the
beam as a function of time.

on the -beam in the non-vibratory case. The
total hydrodynamic force in the non-vibratory
case is almost constant in time. By including
beam vibrations the total hydrodynamic force is
significantly reduced. This reduction is mainly
due to the added mass effect and the force com-
ponents proportional to the vibration velocity.
This means that the two latter terms of equa-
tion (4) play an important role when predicting
the modal total force on the beam. A rough
estimate of the pressure by dividing the total
hydrodynamic force by the wetted area shows
that cavitation will occur at time ¢ = 0.00019
[s}, t = 0.00031 [s] and t = 0.00036 [s], i.e. that
the total pressure is equal to the vapor pressure.
Since the effect of cavitation is neglected, part
of the negative force in Figure 3 is unrealistic.
The agreement of the total hydrodynamic force
due to the two analytical methods is not satis-
factory. The differences are believed to be due
to inadequate modelling of the vertical velocity
on the wetted surface in the simplified analytical
method.

We will now focus the attention on the an-
alytical non-simplified method and decompose
the corresponding total hydrodynamic force
Frorap on the beam into excitation force F.,.,
damping force Fyamping as well as added mass
force Faddedmass. These force components are
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Figure 4: Force components on the beam as a
function of time.

identical with the modal excitation force, modal
damping force and modal added mass force; re-
spectively, when ¥, = 1.0 (See equation (4)).
Figure 4 reveals each of these force components
as a function of time. From the figure it is
clear that the local minima of the total hydro-
dynamic force are due to the local minima of
the damping force. These minima correspond
to local maxima in the damping coefficients as

well as the time derivative 25‘-%9 of the wetted

surface. In that way 5%%—‘-1 becomes an impor-
tant parameter when analysing wetdeck slam-
ming. Large values of "—‘}9 is caused by a small
relative angle between the beam and the free
surface near the edges (z = £c(t)). This means
that hydroelastié effects are less important when
considering slamming on wedges with moderate
or large deadrise angles but become important
when analysing wetdeck slamming.

The simplified analytical method underesti-
mates both the modal damping and the modal
added mass coefficients compared to the analyt-
ical non-simplified method. As expected modal
added mass is very large compared to the phys-
ical mass.

A stress estimate in the wetdeck shows that
yielding of the material may occur. The maxi-
mum deformation of the beam is below 0.3 % of
Lg.

The total hydrodynamic force will cause realis-
tic global accelerations of the vessel. This im-
plies that the assumption of %“i = 0 is not valid
and the instantaneous ship response to the lo-
cal slamming force is required. Interaction be-
tween the local slamming force and the global
ship accelerations will be accounted for in two
steps. First we will assume that the ship is rigid.
Later the ship will be modelled as a global elas-
tic structure. Linear ship motion in the time do-
main will be expressed in terms of an analytical

transformation of results from the frequency do-
Ena.in]method developed by Faltinsen and Zhao
1991).

4 Verification

In order to verify the computer code and the
mathematical formulation, miscellaneous meth-
ods may be used. Verification methods based
on conservation of energy, mass and momentum
are commonly used but are difficult to use in this
case. This is due to the inadequate modelling of
the flow near the edges. In order to conserve en-
ergy, mass as well as momentum during the time
simulation, the jet flow near the edges has to
be accounted for in a proper way (See Zhao and
Faltinsen [1993]). Anyway; convergence tests by
varying the time step, number of eigenmodes as
well as number of Fourier components used to
represent the velocity on the wetted surface of
the beam, have successfully been carried out.
Green'’s second identity has been used for ¢ and
an auxiliary function ¥ to check the solution.
Here 9 is the flat plate solution with unit heave
velocity and the same free surface condition as
in the impact problem.
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